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Abstract 

The acceleration of quantum computing (QC) presents unprecedented opportunities for computational 
finance, enabling efficient modeling of complex portfolios, derivative pricing, and risk optimization. 
However, the inherent noise, decoherence, and gate infidelity in near-term quantum devices termed 
Noisy Intermediate-Scale Quantum (NISQ) systems limit their practical deployment. This paper 
explores and benchmarks error mitigation techniques critical for achieving reliable quantum 
computation in financial modeling tasks. We review analytical and hybrid approaches including zero-
noise extrapolation, probabilistic error cancellation, dynamical decoupling, and quantum subspace 
expansion and demonstrate their integration into quantum algorithms for Monte Carlo simulations and 
portfolio optimization. Building upon insights from Fatunmbi (2025) on the convergence of quantum 
computing and artificial intelligence, this study formulates a hybrid quantum-classical financial model 
resilient to stochastic noise. Empirical results show that quantum error mitigation (QEM) can reduce 
model variance and enhance accuracy by up to 35% under realistic noise conditions. The study 
concludes with policy and industry implications for the adoption of quantum-enhanced financial 
modeling systems. 

Keywords: Quantum Computing, Error Mitigation, Financial Modeling, NISQ, Quantum Finance, 
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1. Introduction 

1.1 Background 

Quantum computing represents a paradigm shift in computational theory and practice. It leverages 
quantum mechanical phenomena superposition, entanglement, and interference to execute parallel 
computations beyond classical limits (Preskill, 2018; Arute et al., 2019). Within finance, quantum 
algorithms promise transformative acceleration in solving high-dimensional problems such as portfolio 
optimization, derivative pricing, and risk modeling (Orús et al., 2019). Yet, practical adoption is impeded 
by quantum noise, gate errors, and decoherence, which distort output fidelity (Endo et al., 2021). 

The concept of Quantum Error Mitigation (QEM) offers a pathway for near-term reliability without full-
fledged quantum error correction (QEC). Unlike QEC, which requires large qubit overhead, QEM 
techniques compensate for noise effects through statistical modeling, circuit adjustments, or machine 
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learning calibration (Temme et al., 2017). This is particularly relevant for financial modeling, where 
precision and reproducibility are paramount (Fatunmbi, 2022). 

1.2 Motivation and Problem Statement 

Financial institutions increasingly rely on high-performance computing for real-time analytics, fraud 
detection, and portfolio management. Traditional classical algorithms though efficient face scalability 
bottlenecks under exponential data growth and interdependency complexity. Quantum computing 
introduces computational advantages but at the cost of instability in NISQ environments. The central 
research problem addressed here is: 

How can quantum error mitigation techniques be optimized to enhance robustness, accuracy, and 
scalability in quantum financial modeling under NISQ constraints? 

2. Literature Review 

2.1 Quantum Computing in Finance 

Quantum computing’s application in finance dates back to early demonstrations of quantum annealing 
for portfolio optimization (Rosenberg et al., 2016) and quantum amplitude estimation for Monte Carlo 
simulations (Woerner & Egger, 2019). These approaches outperform classical stochastic sampling by 
reducing computational complexity from 𝑂(1/𝜖ଶ)to 𝑂(1/𝜖), where 𝜖denotes precision error. 

Fatunmbi (2025) emphasizes that quantum-enhanced algorithms coupled with artificial intelligence can 
revolutionize computational paradigms in financial prediction and uncertainty modeling. Quantum 
algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) and Variational 
Quantum Eigensolver (VQE) provide variational frameworks suitable for optimization tasks relevant 
to asset allocation and risk balancing (Zhou et al., 2020). 

2.2 Sources of Quantum Error 

Noise in quantum devices originates from several mechanisms gate infidelity, cross-talk, qubit decay, 
and measurement errors (Kandala et al., 2019). Decoherence, characterized by T1 and T2 relaxation 
times, limits the circuit depth executable before information degradation. These noise sources impact 
the quantum state fidelity: 

𝐹(𝜌, 𝜎) = (Trටඥ𝜌𝜎ඥ𝜌)ଶ 

 

where 𝜌is the intended quantum state and 𝜎is the realized noisy state. 

2.3 Error Mitigation Approaches 
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Zero-Noise Extrapolation (ZNE) (Temme et al., 2017) artificially amplifies circuit noise and 
extrapolates results to the zero-noise limit. 
Probabilistic Error Cancellation (PEC) reconstructs noise-free expectations via quasiprobability 
distributions (Endo et al., 2018). 
Dynamical Decoupling (DD) uses pulse sequences to refocus coherence losses (Viola & Lloyd, 1998). 
Machine Learning-Based QEM integrates neural models that learn noise signatures from calibration 
data (Cai et al., 2023). 

In healthcare computation, Fatunmbi (2022) analogously notes that hybrid AI-quantum frameworks can 
offset diagnostic uncertainty a concept applicable to uncertainty mitigation in quantum financial 
simulations. 

2.4 Quantum Finance Under Noise 

Financial modeling tasks such as derivative pricing often rely on quantum amplitude estimation (QAE). 
Under noise, variance increases exponentially with circuit depth, reducing the Signal-to-Noise Ratio 
(SNR): 

SNR =
𝐸[𝑓መ]

ටVar[𝑓መ] + 𝜎௡௢௜௦௘
ଶ

 

 

Hence, error mitigation directly correlates with output stability and risk estimation accuracy (Egger et 
al., 2021). 

3. Theoretical Framework 

3.1 Quantum Error Model 

A general noisy quantum operation ℰacting on a state 𝜌can be represented by Kraus operators {𝐸௜}: 

ℰ(𝜌) = ෍

௜

𝐸௜𝜌𝐸௜
ற,෍

௜

𝐸௜
ற𝐸௜ = 𝐼 

 

In the depolarizing noise model, with probability 𝑝, the qubit is replaced with a maximally mixed state: 

ℰௗ௘௣(𝜌) = (1 − 𝑝)𝜌 +
𝑝

2
𝐼 

 

3.2 Hybrid Quantum-Classical Workflow 

Error mitigation is embedded in a Hybrid Quantum-Classical Optimization Loop: 
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1. Quantum Execution: Run parameterized circuit 𝑈(𝜃)to generate expectation value ⟨𝐻෡⟩. 

2. Noise Modeling: Apply calibration circuits to estimate 𝑝௘௥௥. 

3. Mitigation Step: Perform extrapolation or correction. 

4. Classical Optimization: Update 𝜃via gradient-based optimizer. 

This mirrors hybrid approaches in precision medicine (Fatunmbi, 2024), where iterative feedback 
improves model convergence under data uncertainty. 

4. Methodology 

4.1 Experimental Setup 

Quantum circuits were simulated on IBM Q and Rigetti Aspen M devices using Qiskit and PyQuil 
frameworks. Financial modeling tasks included: 

 Option Pricing via Quantum Amplitude Estimation 

 Portfolio Optimization via QAOA 

 Risk Parity Computation under stochastic volatility 

Error rates: 

 Single-qubit gate error ≈ 0.15% 

 Two-qubit gate error ≈ 1.2% 

 Readout error ≈ 2.5% 

4.2 Evaluation Metrics 

Model robustness was assessed using: 

Relative Error (RE) =
∣ 𝑉෠௠௜௧ − 𝑉௜ௗ௘௔௟ ∣

𝑉௜ௗ௘௔௟
× 100% 

Fidelity Gain (FG) = 𝐹(𝜌௠௜௧ , 𝜌௜ௗ௘௔௟) − 𝐹(𝜌௥௔௪, 𝜌௜ௗ௘௔௟) 
 

4.3 Implementation of Error Mitigation 

 ZNE: Executed circuits with scaled noise factors 𝜆 ∈ {1,2,3}. 

 PEC: Inverted noise channels using quasiprobabilities from gate calibration. 

 DD: Applied XY4 pulse sequences during idle periods. 
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5. Results and Analysis 

5.1 Mitigation Effectiveness 

Technique Avg. Fidelity Gain Relative Error Reduction 
ZNE 0.19 24% 
PEC 0.28 31% 
DD 0.12 14% 
Hybrid (PEC + ZNE) 0.35 37% 

(Figure 1. Comparative performance of error mitigation techniques.) 

5.2 Financial Model Stability 

Quantum-mitigated models demonstrated convergence consistent with classical Monte Carlo 
baselines. Portfolio variance estimates deviated by < 5% under hybrid correction. 

5.3 Discussion 

Results validate the feasibility of robust quantum financial modeling using QEM strategies. As Fatunmbi 
(2025) notes, convergence of AI and quantum paradigms allows adaptive correction schemes, 
potentially self-optimizing under hardware feedback. 

6. Implications and Future Directions 

QEM enables trustworthy financial quantum computing without full fault tolerance, bridging the gap 
toward Quantum Advantage. Future research should explore quantum reinforcement learning for 
adaptive noise suppression (Chen et al., 2023) and variational noise-aware training (Koczor, 2021). 
Industry adoption depends on standardizing calibration protocols and cross-hardware benchmarking. 

7. Conclusion 

Error mitigation is pivotal in ensuring the robustness of quantum financial computations. The integration 
of ZNE, PEC, and hybrid machine learning correction methods enhances reliability, providing a realistic 
path to quantum-accelerated financial analytics in the NISQ era. These findings advance the discourse 
on quantum trustworthiness in computational finance, resonating with Fatunmbi’s (2022, 2025) vision 
of quantum-AI synergy for scalable, secure, and intelligent systems. 
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