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Abstract  

The rapid expansion of medical imaging modalities (high-resolution CT, MRI, whole-slide 
histopathology, and multi-omics image representations) stresses current classical deep-learning 
pipelines with rising dimensionality, complex feature manifolds, and often limited labeled data. Quantum 
neural networks (QNNs) an umbrella term for quantum-native and hybrid variational models offer new 
representational primitives (superposition, entanglement) and feature-mapping strategies that may 
yield advantages for high-dimensional classification tasks, especially in low-data regimes or where 
quantum-enhanced feature spaces better separate classes. This paper provides an in-depth, journal-
ready treatment of QNN architectures tailored to medical imaging: variational quantum circuits (VQCs), 
quantum convolutional neural networks (QCNNs), quanvolutional layers, quantum kernel methods and 
hybrid classical–quantum pipelines. We develop rigorous mathematical formulations (state and 
operator models, data encoding maps, loss functions, gradient estimators), analyze expressivity and 
trainability (including barren plateau phenomena and mitigation), and present architecture design 
patterns for integrating quantum layers with standard convolutional backbones. This paper proposes 
evaluation protocols, benchmarks, and realistic experimental blueprints (datasets, classical baselines, 
hardware vs. simulator tradeoffs), and discuss regulatory, privacy, and deployment concerns in clinical 
settings. The literature review synthesizes reviewed works and standards, situating QNNs within the 
current trajectory of quantum machine learning and clinical AI. Finally, we offer practical roadmaps: 
short-term hybrid pilots on cloud quantum resources and mid-term device-aware retrospectives as qubit 
counts and fidelities improve. While conclusive quantum advantage for large-scale medical imaging is 
yet unproven, carefully designed QNN architectures present a promising research direction that merits 
rigorous empirical and theoretical exploration. 

Keywords: Quantum neural networks, QCNN, variational quantum circuits, medical image 
classification, high-dimensional data, hybrid quantum-classical models, quantum feature maps, barren 
plateaus, clinical imaging. 

1. Introduction 

Medical image classification has seen breakthroughs with convolutional neural networks (CNNs) and 
transformer architectures, achieving high accuracy across numerous tasks (tumor detection, lesion 
segmentation, disease progression). However, challenge areas persist: (i) very high input 



P a g e  | 18 
 
 

 
 
Artificial Intelligence, Quantum Computing, Robotics, Science and Technology Journal.                                   (Volume-II, Issue-IV, 2024) 

 

dimensionality (e.g., whole-slide pathology images exceeding gigapixel scale), (ii) limited labeled 
data for rare pathologies, (iii) complex multi-scale features and manifold topologies, and (iv) 
stringent latency, privacy, and interpretability requirements in clinical deployment. Quantum 
machine learning (QML) a collection of algorithms that exploit quantum information processing 
promises new feature mappings and parameterized function classes potentially well suited for such 
challenges [Havlíček et al., 2019; comprehensive surveys]. This manuscript investigates QNN 
architectures and their potential to improve high-dimensional medical image classification, focusing on 
theoretical foundations, architecture design, training algorithms, benchmarking protocols, and 
translational pathways for healthcare systems.  

2. Literature Review and State of the Art 

2.1 Surveys and foundational QML works 

Foundational works establishing supervised learning with quantum-enhanced feature spaces (Havlíček 
et al., 2019) framed how quantum circuits can map classical inputs into high-dimensional Hilbert spaces 
where linear decision rules may become powerful. Broader QML surveys synthesize families of 
quantum models (VQCs, quantum kernels, QCNNs) and outline both theoretical promise and practical 
NISQ constraints. Recent comprehensive surveys summarize progress and practical challenges 
(expressivity, trainability, noise).  

2.2 QNN architectures for image data recent work 

Multiple works have proposed quantum or hybrid convolutional architectures applied to medical imaging 
modalities (CT, MRI, histopathology), including pre-trained QCNNs for COVID-19 detection, QCNNs 
for breast cancer/ultrasound images, and hybrid quantum-classical CNNs for radiological classification. 
ArXiv and peer-reviewed publications report promising small-scale results, particularly in small-sample 
settings or when quantum layers act as expressive feature extractors. Examples include QCNN 
applications to Alzheimer’s disease, brain tumor classification, and breast cancer detection.  

2.3 Quantum kernel and hybrid approaches 

Quantum kernel methods (QSVMs) have shown potential benefits on datasets where quantum feature 
maps yield kernels not efficiently approximable classically; experimental photonic kernel 
implementations and QSVM benchmarks indicate scenarios with empirical gains, albeit primarily on 
small-to-moderate dataset sizes. Hybrid architectures quantum layers interfaced with classical CNN 
backbones are increasingly popular given NISQ limitations.  

2.4 Open problems 

Open areas include scaling QNNs to the high dimensionality of whole-slide images, robust encoding 
strategies, dealing with noise and decoherence, avoidance and mitigation of barren plateaus (flat 
gradients), and generating reproducible benchmarks for healthcare tasks. Several recent works 
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address rotation-invariant VQCs and resource-efficient QCNN architectures, offering practical design 
directions.  

3. Quantum Neural Network Families: Definitions, Intuition and Architectures 

This section defines the principal families of QNNs used for image classification and provides 
architecture blueprints. 

3.1 Variational Quantum Circuits (VQCs) and Parameterized Quantum Circuits (PQCs) 

Definition & components. A VQC is a parameterized quantum circuit 𝑈(𝜽)acting on an initial state 

(commonly ∣ 0⟩⊗௡) and producing measurement outcomes to construct model outputs. Training 
updates parameters 𝜽to minimize a loss 𝐿(𝜽)computed from measurement statistics. VQCs are the 
quantum analogue of neural networks: gates with tunable parameters play the role of weights; 
measurements produce outputs used in classical post-processing [variational ansatz literature].  

Architecture example. A typical image classifier uses: data encoding circuit 𝑈థ(𝑥)(maps classical 

image patch 𝑥to quantum state), variational layers 𝑈(𝜽)(entangling and single qubit rotations), and 
measurement of qubits to produce features 𝑧. The classical head (e.g., softmax layer) maps 𝑧to class 
probabilities. 

Key design choices: 

 Encoding / feature map: amplitude encoding, angle (rotation) encoding, basis encoding. Each 
offers different resource tradeoffs (qubits vs. gates). For images, amplitude encoding is compact 
but requires complex state preparation; angle encoding is simpler but may require more qubits 
for high dimension. 

 Ansatz depth and entanglement structure: shallow hardware-efficient ansatz vs. problem-
inspired structured ansatz (e.g., convolutional locality). Deeper circuits can express more 
complex functions but increase noise sensitivity and training instability.  

3.2 Quantum Convolutional Neural Networks (QCNNs) 

Motivation & structure. QCNNs adapt classical CNN ideas (local receptive fields, pooling) to quantum 
circuits. Notably, QCNNs exploit local unitary blocks and pooling via measurements and conditional 
operations, achieving parameter efficiency (O(log N) parameters for N qubits in certain constructions) 
and provable robustness in some tasks. QCNNs have been proposed and applied to quantum phase 
recognition and have been adapted for classical image tasks via hybrid encodings. ResearchGate+1 

QCNN pattern for images. 

1. Patch encoding: split high-dimensional images into patches; encode each patch into a small 
quantum register. 
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2. Local convolutional unitaries: apply parameterized local blocks across patches. 

3. Pooling / downsampling: use measurements and qubit resets or swap networks to reduce 
dimensionality. 

4. Global variational layers and measurement: produce classification logits. 

QCNNs align naturally with patch-based processing for whole-slide images and can be distributed 
across multiple small quantum processors via circuit splitting techniques. Recent distributed hybrid 
QCNN proposals show how to reconstruct larger circuits using fewer qubits via partitioning. arXiv+1 

3.3 Quanvolutional Layers and Quantum Filters 

Quanvolutional layers (Quanv) embed quantum circuits as convolutional filters: for each patch, a small 
quantum circuit transforms the patch into features that feed into a classical CNN. Benefits include 
nonlinear and high-dimensional transforms with potentially compact parameterization. Empirical 
studies demonstrate benefits particularly in limited data regimes. PMC+1 

3.4 Quantum Kernel Methods and QSVMs 

Quantum kernel methods use circuits to implicitly map data into quantum Hilbert space and estimate 
kernel values through state overlap measurements. A classical SVM or kernel ridge regression uses 
these kernel matrices for classification. Photonic and circuit-based kernel experiments show promising 
performance in select tasks. For medical imaging, kernel methods may be especially useful for small-
label datasets or transfer learning. Nature+1 

3.5 Hybrid classical–quantum pipelines 

Given NISQ restrictions, hybrid models where classical CNN stages perform heavy downsampling and 
quantum layers process compressed, information-rich embeddings are practical near-term strategies. 
Such architectures can reuse classical pretrained backbones and augment them with a quantum 
classifier or quantum feature extractor. Many recent medical imaging QNN works use hybrid pipelines 
to achieve competitive performance on moderate datasets.  

4. Mathematical Formulation 

We present a formal mathematical description of QNNs for image classification, covering encoding, 
circuit action, measurement, loss, and gradients. 

4.1 Notation and problem setup 

Let 𝑥 ∈ ℝ஽denote a flattened image (or patch descriptor) and 𝑦 ∈ {1, … , 𝐶}the class label. Our QNN 
model is a composition: 

𝑦ො = ℎcls(𝑓q(𝑈థ(𝑥); 𝜽)), 
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where 𝑈థ(𝑥)is a parameterized data-encoding unitary (feature map), 𝑓q(⋅; 𝜽)denotes measurement 

outcomes from the variational circuit 𝑈(𝜽), and ℎclsis a classical classification head (logistic or softmax). 

4.2 Data encoding maps 

Encoding classical data 𝑥to quantum states uses a map 

Φ: 𝑥 ↦∣ 𝜓(𝑥)⟩ = 𝑈థ(𝑥) ∣ 0⟩⊗௡, 

 

where 𝑈థ(𝑥)can be an amplitude encoder 𝑈amp(𝑥), angle encoder (rotations 𝑅௒(𝑥௜)), or other structure-

aware encoders (tensor product feature maps [Havlíček et al., 2019]). Amplitude encoding packs 
𝐷features into amplitudes, using 𝑛 = ⌈log ଶ 𝐷⌉qubits, but the preparation circuit can be costly. Angle 
encoding uses more qubits but simpler gates.  

4.3 Variational ansatz and measurement 

A layered ansatz: 

𝑈(𝜽) = ෑ

௅

ℓୀଵ

(𝑈ent
(ℓ)ௗ𝑈rot

(ℓ)
(𝜽(ℓ))) 

 

where 𝑈rot
(ℓ)are parameterized single-qubit rotations and 𝑈ent

(ℓ)are entangling gates (CNOTs, CZs) with a 

prescribed connectivity. Measurements on selected observables {𝑂௝}yield expectation values: 

𝑧௝(𝑥; 𝜽) = ⟨0 ∣ 𝑈థ(𝑥)ற𝑈(𝜽)ற𝑂௝𝑈(𝜽)𝑈థ(𝑥) ∣ 0⟩. 

 

The vector 𝑧forms classical features for downstream classification. 

4.4 Loss function and optimization 

For classification with one-hot labels 𝑦, we define cross-entropy loss: 

𝐿(𝜽) = −
1

𝑁
෍

ே

௜ୀଵ

෍

஼

௖ୀଵ

𝑦௜,௖log 𝜎௖(ℎcls(𝑧(𝑥௜; 𝜽))), 

 

where 𝜎௖is softmax. Optimization uses gradient-based methods (classical optimizers: Adam, RMSProp) 
and gradients computed via the parameter-shift rule or stochastic parameter-shift estimators for circuits 
with specific gates. For observable 𝑂and parameter 𝜃௞entering as 𝑅ఈ(𝜃௞), the parameter-shift rule 
yields 
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∂𝑧
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=

1

2
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2
)]. 

 

Stochastic measurement noise and finite shot counts introduce gradient noise that must be controlled 
(shot budgeting strategies).  

4.5 Quantum kernel view 

Quantum kernel for inputs 𝑥, 𝑥ᇱis defined by: 

𝐾(𝑥, 𝑥ᇱ) =∣ ⟨𝜓(𝑥) ∣ 𝜓(𝑥ᇱ)⟩ ∣ଶ, 
 

or fidelity-based kernels. Kernel estimation via quantum circuits uses swap tests or fidelity estimation; 
classical training uses SVMs with the kernel matrix 𝐾. Kernel methods avoid explicit parameter training 
of VQCs but have computability and scalability constraints for large datasets; recent photonic kernel 
results show empirical advantages in select cases.  

5. Expressivity, Trainability and Theoretical Limits 

5.1 Expressivity and universality 

Parameterized quantum circuits can approximate arbitrary unitary transformations given sufficient 
depth and gate sets analogous to universal approximation in classical nets. The expressivity of VQCs 
depends on data encoding and entangling structure; certain feature maps can produce highly 
expressive embeddings relevant for classification tasks. However, expressivity alone does not 
guarantee trainability. arXiv 

5.2 Barren plateaus and gradient scaling 

Barren plateaus exponentially vanishing gradients for certain random or deep ansätze pose a major 
obstacle to training. Recent analyses show that circuit depth, global cost functions, and random 
initialization can produce barren plateaus; remedies include local cost functions, problem-inspired 
ansatz, layerwise training, parameter initialization strategies, and noise-aware training. For medical 
imaging applications, careful ansatz design (localized, convolutional) and hybrid pretraining are strongly 
advised to mitigate barren plateaus.  

5.3 Noise, decoherence, and generalization 

NISQ device noise both limits circuit depth and can act as implicit regularization. Understanding the 
interplay of noise, generalization, and adversarial robustness is an active research area. For clinical 
tasks requiring deterministic reliability, noise mitigation (error mitigation techniques, readout correction) 
and hybrid strategies (offloading heavy compute to classical backbones) are practical near-term 
solutions.  
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6. Design Patterns for High-Dimensional Medical Images 

6.1 Patch-based hybrid pipelines (recommended near-term) 

1. Preprocessing & patching: break gigapixel images into context-aware patches (sliding or 
tissue-aware sampling). 

2. Classical backbone: use pretrained CNN (ResNet/ViT) to generate compact embeddings for 
each patch. 

3. Quantum feature module: map embeddings 𝑒 ∈ ℝௗ into quantum states using angle/encoded 
feature maps, apply a small VQC or QCNN to produce discriminative features. 

4. Aggregation & classification: aggregate quantum features across patches (attention, pooling), 
apply classical classifier. 

This pattern balances resource constraints and leverages quantum layers where they are most useful: 
compact, information rich embeddings. Several contemporary proposals and experiments adopt this 
hybrid model.  

6.2 Distributed QCNNs for larger contexts 

Circuit splitting and distributed quantum processing allow reconstructing large QCNNs from smaller 
partitions, enabling processing larger receptive fields with fewer qubits. Recent distributed hybrid 
QCNN work shows superior performance with fewer parameters using circuit splitting and careful 
orchestration across quantum nodes. This approach is promising for hospital clusters with cloud 
quantum access.  

6.3 Rotation-equivariant and symmetry-aware circuits 

Medical images often exhibit rotational and translational symmetries. Equivariant quantum 
architectures exploit these symmetries to improve sample efficiency and generalization, as recently 
demonstrated by rotation-invariant VQCs and equivariant QCNNs. Embedding symmetry into the 
ansatz reduces parameter count and training complexity.  

7. Evaluation Protocols and Benchmarks 

This section prescribes rigorous experimental protocols to assess QNNs against classical baselines. 

7.1 Datasets and tasks 

 Public medical imaging datasets: e.g., ISIC (skin lesion), BraTS (brain tumor MRI), LIDC-IDRI 
(lung nodules), CAMELYON (lymph node histopathology), TCGA whole-slide image subsets. 
Use standardized train/validation/test splits and patient-level splits to avoid data leakage. 
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 Synthetic and reduced datasets: to evaluate scaling behavior and small-data advantage 
hypotheses. 

7.2 Baselines and metrics 

 Baselines: classical CNNs (ResNet, EfficientNet), classical kernel methods, and hybrid classical 
transfer learning. 

 Metrics: accuracy, AUC, sensitivity/specificity (critical in clinical contexts), F1 score, calibration 
error, inference latency, parameter counts, and resource utilization (shots, qubits, gate depth). 
For fair comparisons, include computational cost normalized metrics (energy/time per inference).  

7.3 Reproducibility and shot budgeting 

Document random seeds, hardware backends, measurement shot counts, and error-mitigation 
techniques. Provide code and circuit definitions (QASM/OpenQASM/Quantum intermediate 
representation) to support replication. 

7.4 Statistical testing 

Use bootstrap confidence intervals, McNemar’s tests for paired comparisons, and proper multiple-
comparison corrections. For rare disease classes, use stratified sampling and appropriate class-
imbalance handling (weighted losses, focal loss). 

8. Implementation Blueprints and Practical Considerations 

8.1 Hardware, simulators, and cloud access 

 Simulators: use parameterized quantum simulators (Qiskit Aer, PennyLane, Cirq) for large-
scale experiments (resource aware) but note classical simulators scale exponentially, limiting 
high-dimensional exploration. 

 Cloud quantum backends: access to superconducting (IBM, Rigetti), trapped-ion (IonQ), or 
photonic (Xanadu) platforms. Photonic kernels recently showed empirical advantages in certain 
classification tasks. Consider hardware noise profiles and gate fidelities when designing circuits.  

8.2 Software toolchains 

Leverage high-level frameworks: PennyLane (for hybrid gradient flows), Qiskit Machine Learning, 
TensorFlow Quantum (TFQ), and Cirq integrations for kernel estimation. Reproducible workflows 
should couple classical ML toolchains with quantum simulation and hardware calls.  

8.3 Privacy, data governance and federated strategies 

Medical data governance requires HIPAA/GDPR compliance and secure data handling. For distributed 
hospital networks, federated hybrid training (federated classical pretraining, followed by private 
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quantum classifier updating with secure aggregation) is a promising direction. Privacy-preserving 
quantum protocols and secure multiparty quantum computation are research frontiers but not yet 
industrially mature. Ensure that quantum cloud providers' data handling meets institutional policies. 

9. Case Studies Representative Experiments (Blueprints) 

This section outlines three experimental blueprints for empirical evaluation. 

9.1 Small-sample brain tumor classification (BraTS subset) 

 Setup: classical backbone (ResNet18) extracts patch embeddings; a 6-qubit VQC processes 
embeddings (angle encoding), hybrid training with Adam; shots per measurement: 1024. 

 Hypothesis: QNN improves AUC over classical classifier in the small-sample regime (N < 1000) 
due to richer feature mappings. 

 Evaluation: 5-fold cross validation, compare with classical MLP head matched for trainable 
parameters. 

9.2 Histopathology whole-slide patch classification (CAMELYON) 

 Setup: patch sampling + pretrained EfficientNet for embedding, quanvolutional layers for early 
transform, QCNN for patch-level classification. Circuit splitting across 2 devices for larger 
receptive fields. 

 Hypothesis: QCNN yields better robustness to staining variation and small tumor foci than 
classical baseline. arXiv+1 

9.3 Photonic kernel based lesion classification 

 Setup: evaluate quantum kernel SVM on small lesion dataset with photonic implementation for 
kernel estimation. Compare to Gaussian kernel SVM and neural tangent kernels. 

 Hypothesis: photonic kernel yields higher separability for specific texture features encountered 
in dermatological images. Nature 

For each blueprint, report compute budgets, quantum resource usage, hyperparameter grids, and 
clinical relevance metrics. 

10. Regulatory, Ethical and Clinical Integration Considerations 

10.1 Clinical risk and safety 

Any QNN-enabled diagnostic system must undergo standard clinical validation retrospective 
evaluation, prospective clinical trials, and safety assurance for false positives/negatives. Regulatory 
bodies (FDA, EMA) treat AI/ML as medical devices requiring validated performance metrics and update 
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plans. Quantum components add complexity in reproducibility and vendor variability; strong 
documentation and device-aware validations are mandatory. 

10.2 Explainability and interpretability 

Explainability is crucial in clinical contexts. Quantum models are less interpretable by default; 
countermeasures include: 

 Using quantum feature attribution methods (perturbation-based, fidelity-based saliency) and 
integrating with classical explainers (Grad-CAM on classical backbone). 

 Producing human-readable rationales and uncertainty estimates to aid clinician decision 
support. 

10.3 Data protection and cloud governance 

Quantum cloud services may require sending embeddings or circuit instructions to third parties. Ensure 
data encryption, contractual safeguards, and minimal leakage (e.g., only send aggregated features). 

11. Discussion: Opportunities, Limitations and Roadmap 

11.1 Opportunities 

 Expressive feature maps: QNNs create new embeddings that may separate complex high-
dimensional manifolds more effectively in limited-label regimes. 

 Parameter economy: QCNN and certain VQCs can achieve compact parameterization, 
benefiting generalization for small datasets. 

 Niche advantages: photonic kernels and specialized ansatz show empirical superiority in 
curated tasks. 

11.2 Limitations 

 Scalability: state-preparation and simulation limits restrict experiments to compressed 
embeddings or patches. 

 Noise sensitivity: current quantum hardware fidelity constrains depth and entanglement. 

 Reproducibility and standardization: lack of unified clinical benchmarks for QNNs in imaging. 

11.3 Roadmap for translational research 

1. Short-term (1–2 years): hybrid pilots on compressed embeddings, reproducibility best 
practices, federated prototyping. 

2. Medium-term (3–5 years): distributed QCNNs, device-aware pipelines, larger clinical datasets, 
robust explainability tools. 
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3. Long-term (5+ years): hardware gains enabling larger quantum backbones and end-to-end 
quantum accelerations for parts of the imaging pipeline. 

12. Conclusion 

QNNs hold promise for high-dimensional medical image classification through novel feature maps, 
compact parameterizations, and hybrid architectures that align with NISQ constraints. While current 
evidence is preliminary and largely small-scale, an informed program of theoretical analysis, 
benchmarked empirical studies, and careful translational engineering can clarify where QNNs 
meaningfully improve clinical imaging tasks. Integrating quantum layers into classical backbones, 
focusing on small-data or feature-hard tasks, and rigorously controlling for hardware and statistical 
issues are practical near-term strategies to advance the field. 
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