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Abstract 
Hospital resource allocation and scheduling covering operating rooms, staff shifts, bed assignments, 
and equipment utilization pose large-scale combinatorial optimization challenges with high stakes for 
patient outcomes, throughput, staff wellbeing and cost efficiency. Classical optimization methods 
(integer programming, heuristics, meta-heuristics) have had success but increasingly hit scalability 
limits in the face of growing complexity, uncertainty and real-time demands. Meanwhile, quantum 
computing (in its near-term “Noisy Intermediate-Scale Quantum” or NISQ era) and quantum-inspired 
optimization offer new opportunities for tackling scheduling problems via quadratic unconstrained 
binary optimization (QUBO), variation quantum circuits, quantum annealing and hybrid quantum-
classical frameworks. In this article, we propose a comprehensive framework for applying near-term 
quantum/quantum-inspired algorithms to hospital scheduling problems, present full mathematical 
formulations of scheduling models mapped to QUBO and variational circuits, review literature across 
healthcare scheduling and quantum optimization, discuss implementation architecture (including hybrid 
pipelines, cloud quantum access, latency, hardware limitations), and present use-case scenarios 
(operating room scheduling, bed assignment, staff shift optimization) with insights for hospital 
administrators and practitioners.Ths paper discusses practical constraints data quality, integration, 
regulatory compliance, interpretability and lay out a roadmap for near-term adoption of quantum-
enabled scheduling in healthcare. Our findings suggest that while fully fault-tolerant quantum 
advantage remains in the future, near-term hybrid/quantum-inspired solutions can deliver meaningful 
improvements in scheduling efficiency, resource utilisation and responsiveness in hospital settings. 
 

Keywords: quantum computing, hospital scheduling, resource allocation, QUBO, hybrid quantum-
classical, operating room scheduling, bed assignment, staff shift optimisation, healthcare operations. 

1. Introduction 

Modern hospitals operate as complex socio-technical systems. They must allocate multiple scarce 
resources operating rooms (ORs), intensive care units (ICUs), ventilators, nursing staff, ancillary 
equipment under dynamic conditions: emergency arrivals, staff absences, equipment failures, 
heterogeneous patient flows, regulatory and staffing constraints, and cost pressures. Efficient 
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scheduling and allocation are thus of prime importance for patient flow, quality of care, cost containment 
and staff wellbeing. 

Classical optimisation approaches (integer programming, heuristics, meta-heuristics, constraint-
programming) have been widely applied to hospital scheduling and resource allocation with impressive 
results in many settings. Yet the scale and complexity of modern hospital operations real-time 
adjustment, multimodal constraints (staff skills, equipment interfaces, patient priority), uncertainty, and 
the requirement for quick precomputation mean that even advanced classical methods may struggle to 
deliver optimal or near-optimal solutions within operational timeframes. 

Parallel to this, quantum computing has matured to a level where near-term (NISQ) devices and 
quantum-inspired algorithms can tackle combinatorial optimization problems (e.g., schedule 
optimization, routing, assignment problems) via techniques such as quantum annealing, variational 
quantum circuits and QUBO formulations. Within healthcare operations, there is growing interest in 
mapping scheduling problems to quantum or quantum-inspired frameworks to tap their potential for 
exploring complex solution spaces more rapidly and with different heuristics than classical methods. 
For instance, pilot works in hospital resource allocation show promise of quantum or quantum-inspired 
optimization reducing wait times, improving utilization and enabling faster rescheduling under 
disruption.  

However, to date the literature on applying near-term quantum techniques specifically to hospital 
scheduling remains limited; issues of hardware limitations, real-time latency, data integration, 
interpretability, resilience, and regulatory compliance remain under-explored. This paper aims to fill that 
gap by offering a structured, practically-oriented, theoretically-rich analysis of near-term quantum 
computing applications to hospital scheduling. 

Our contributions are as follows: 

1. We provide an extended literature review bridging hospital scheduling/resource allocation and 
quantum/quantum-inspired optimisation. 

2. We formulate scheduling problems (OR scheduling, bed assignment, staff shift allocation) in 
mathematical form and show how to map them to QUBO and variational quantum frameworks. 

3. We propose a hybrid quantum-classical architecture suitable for hospital operations: combining 
classical pre-processing/data pipelines with quantum-optimisation modules and real-time 
integration. 

4. We discuss implementation issues: data sources, latency, quantum-hardware/cloud access, 
scheduling disruption (emergency arrivals), staff constraints, regulatory/interpretability 
requirements. 
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5. We present use-case scenarios and discuss expected benefits, limitations, and a roadmap for 
near-term adoption of quantum-enabled scheduling in hospitals. 

The rest of the paper is structured as follows: Section 2 reviews the literature; Section 3 develops the 
theoretical foundations and mathematical formulations; Section 4 presents the methodology and 
architecture for deployment; Section 5 illustrates use-case scenarios/analysis; Section 6 discusses 
practical and governance implications; Section 7 concludes with future research directions. 

2. Literature Review 

In this section we examine three interrelated streams of literature: (i) hospital scheduling and resource 
allocation optimisation; (ii) quantum and quantum-inspired optimisation methods for scheduling and 
resource allocation; (iii) near-term quantum applications in healthcare operations. 

2.1 Hospital scheduling and resource allocation 

Hospital scheduling has been an extensively studied area in operations research. Key problem classes 
include operating room (OR) scheduling (block time allocation, case sequencing, theatre staffing) 
(Salezze Vieira et al., 2025), bed/ICU bed allocation, staff rostering (nurse scheduling, physician shifts) 
and emergency department (ED) patient-flow scheduling. For instance, outpatient appointment 
scheduling and resource allocation have been studied via simulation-heuristic methods: Lin et al. (2017) 
investigate integrated resource allocation and appointment scheduling in an ophthalmology clinic 
setting.  

In the hospital scheduling domain, several complicating factors are present: multi-objective trade-offs 
(utilisation vs wait time vs cost), uncertainty (emergency arrivals, cancellations), frequent disruptions 
and rescheduling needs, heterogeneous resource types (rooms, staff, equipment), and stringent 
regulatory/quality requirements (staffing ratios, accreditation). For instance, adaptive capacity 
allocation improves scheduling performance in clinics under uncertain demand.  

2.2 Quantum and quantum-inspired optimisation methods for scheduling and allocation 

Quantum computing and quantum-inspired methods (digital annealing, coherent Ising machines, 
QUBO and Ising modelling, variational circuits) have gained traction in combinatorial optimisation, 
scheduling and assignment problems. A relevant study on resource-constrained project scheduling 
problem (RCPSP) uses quantum annealing to solve MILP-formulated scheduling tasks. Additionally, 
the “Application of Quantum Annealing to Nurse Scheduling Problem” demonstrates that quantum 
annealing hardware (D-Wave) can solve nurse scheduling with hard constraints. More broadly, the 
systematic review “Quantum Computing for Healthcare: A Review” outlines how quantum methods may 
support operational optimisation in healthcare.  
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However, despite this emergent work, literature specific to hospital scheduling (as opposed to generic 
scheduling or logistics) is limited; in particular the translation of hospital constraints, real-time 
adaptation, integration and hybrid quantum-classical pipelines remains under-analysed. 

2.3 Near-Term quantum applications in healthcare operations 

Within healthcare operations, quantum computing applications remain nascent but promising. For 
example, “Real-Time Healthcare Workforce Rescheduling using a Quantum Computer: A Novel 
Approach to Dynamic Staff Allocation in Hospital Settings” (Borgohain, 2025) formulates workforce 
rescheduling as QUBO and reports simulation results reducing staff absence fill-time. Also, “Optimising 
Resource Allocation in Hospitals” (Quantum for Good) describes quantum-inspired assignment of 
emergency patients to resources. A review paper on quantum computing in healthcare (Ali, 2023) 
provides broad survey of quantum potential in healthcare operations, but does not focus specifically on 
hospital scheduling (Fatunmbi, 2021).  

2.4 Synthesis and identified research gaps 

From the literature we draw the following observations: 

 Hospital scheduling/resource allocation is a well-studied domain in operations research, but still 
highly complex in real-world settings (uncertainty, multi-resource, multi-objective, disruptions). 

 Quantum and quantum-inspired optimisation methods are increasingly applied to scheduling/ 
allocation problems in logistics, project scheduling and some healthcare pilot use-cases. 

 However, there is a gap in applying these methods specifically and comprehensively to hospital-
scheduling problems with near-term quantum/quantum-inspired methods, particularly 
considering real-time or near-real-time constraints, hybrid architectures, staff/equipment/patient 
constraints, regulatory and interpretability issues. 

 Moreover, few works provide full mathematical modelling, hybrid classical/quantum pipelines, 
practical implementation architecture and detailed discussion of operational, regulatory, latency 
and integration aspects for hospitals. 

Accordingly, our study attempts to fill this gap by providing a structured framework, full mathematical 
detail, hybrid architecture and roadmap for near-term quantum application to hospital scheduling. 

3. Theoretical Foundations and Mathematical Formulations 

In this section we develop the formal mathematical modelling of hospital scheduling/resource allocation 
problems and map them into quantum/quantum-inspired formulations. We begin by defining generic 
scheduling/resource-allocation problems in hospital context, then show how to map to QUBO 
formulations and outline how variational quantum circuits (VQCs) may be used within hybrid quantum-
classical pipelines. 
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3.1 Problem formulation: Hospital resource allocation & scheduling 

Let us define a generic hospital scheduling scenario. Suppose we wish to allocate a set of resources 
across a planning horizon of 𝑇time slots. We define the following sets: 

 Let 𝑅 = {1,2, … , 𝑛ோ}be the set of resource units (e.g., operating rooms, ICU beds, specialist 
equipment). 

 Let 𝑆 = {1,2, … , 𝑛ௌ}be the set of staff teams (or individual staff members) who must be assigned 
to resources and shifts. 

 Let 𝑃 = {1,2, … , 𝑛௉}be the set of procedures (patients) to be scheduled. Each procedure 
𝑝requires assignment to a resource 𝑟, a staff team 𝑠, within time window [𝑎௣, 𝑏௣] ⊆ {1, … , 𝑇}, and 

has duration 𝑑௣(in adjacent time-slots) and priority weight 𝑤௣. 

 Let 𝐸 = {1, … , 𝑛ா}be equipment units (e.g., imaging devices, ventilators) which may be shared 
across resources. 

We define binary decision variables: 

𝑥௣,௥,௦,௘,௧ = {
1 if procedure 𝑝 is scheduled in resource 𝑟 with staff 𝑠 and equipment 𝑒 starting at time 𝑡,

0 otherwise.
 

 

Time slots require that if scheduled at start 𝑡, then 𝑝occupies slots {𝑡, 𝑡 + 1, … , 𝑡 + 𝑑௣ − 1}. 

The constraints include: 

1. Each procedure is scheduled exactly once (or may be rejected if emergency): 

෍

௥∈ோ

෍

௦∈ௌ

෍

௘∈ா

෍

௕೛ିௗ೛ାଵ

௧ୀ௔೛

𝑥௣,௥,௦,௘,௧ = 1, ∀𝑝 ∈ 𝑃. 

 

2. Resource capacity constraint: At each time slot 𝑡and resource 𝑟, at most one procedure: 

෍

௣∈௉

ௗ ෍

௦∈ௌ

ௗ ෍

௘∈ா

ௗ ෍

୫୧୬ {௕೛ିௗ೛ାଵ,  ௧}

ఛୀ୫ୟ୶ {௔೛,ௗ௧ିௗ೛ାଵ}

𝑥௣,௥,௦,௘,ఛ   ≤   1, ∀𝑟 ∈ 𝑅,  ∀𝑡 ∈ {1, … , 𝑇}. 

 

3. Staff availability constraint: For each time slot 𝑡and staff team 𝑠: 
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෍

௣∈௉

෍

௥∈ோ

෍

௘∈ா

෍

୫୧୬ {௕೛ିௗ೛ାଵ,  ௧}

ఛୀ୫ୟ୶ {௔೛,ௗ௧ିௗ೛ାଵ}

𝟏{𝑠 ∈ team(𝑝)}  𝑥௣,௥,௦,௘,ఛ   ≤   1, ∀𝑠, 𝑡. 

 

Here team(𝑝)denotes the staff teams eligible for procedure 𝑝. 

4. Equipment usage constraint: Similarly, each equipment unit can only be assigned to one 
procedure at a time. 

෍

௣∈௉

෍

௥∈ோ

෍

௦∈ௌ

෍

୫୧୬ {௕೛ିௗ೛ାଵ,  ௧}

ఛୀ୫ୟ୶ {௔೛,ௗ௧ିௗ೛ାଵ}

𝟏{𝑒 ∈ equip(𝑝)}  𝑥௣,௥,௦,௘,ఛ   ≤   1, ∀𝑒, 𝑡. 

 

5. Time window, priority and overtime constraints: We may impose that the completion 𝐶௣ =

𝑡 + 𝑑௣ − 1must be ≤ some threshold, or incur overtime penalty if outside normal working hours. 

6. Objective: A typical objective might be to minimise weighted sum of completion times, OR idle 
time, overtime cost, patient waiting time, or cost of shifted/cancelled procedures: 

min    ෍
௣∈௉

𝑤௣ௗ𝐶௣   +   𝛼ௗ ෍

௥,௧

(1 − ෍

௣,௦,௘

෍

ఛ

𝑥௣,௥,௦,௘,ఛ)   +   𝛽ௗ ෍

௦,௧

( ෍

௣,௥,௘

෍

ఛ

𝑥௣,௥,௦,௘,ఛ − 1)ା, 

 

where 𝛼, 𝛽are weightings for idle time and staff overtime respectively. 

This MIP formulation (or mixed integer programming) can rapidly become intractable as 
𝑛௉ , 𝑛ோ , 𝑛ௌ, 𝑛ா , 𝑇grow, and when disruptions (emergencies, cancellations, staff absences) require 
frequent rescheduling. 

3.2 Mapping to QUBO: Quantum/Quantum-Inspired Formulation 

To leverage quantum and quantum-inspired optimisation, we map the above scheduling problem into 
a Quadratic Unconstrained Binary Optimisation (QUBO) framework, which is amenable to quantum 
annealing and variational quantum circuits (QAOA, VQE) on near-term hardware. The standard QUBO 
form is 

min 
௤∈{଴,ଵ}ಿ

  𝑞ୃ𝑄ௗ𝑞, 

 

where 𝑄 ∈ ℝே×ேis a symmetric matrix encoding cost and penalties, and 𝑞is a vector of binary decision 
variables. 
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We index each potential scheduling assignment (𝑝, 𝑟, 𝑠, 𝑒, 𝑡)with a unique binary variable 𝑞௜, where 𝑖 ∈

{1, … , 𝑁}covers all feasible assignments. Define cost coefficients 𝑐௜corresponding to assignment 𝑖(e.g., 
completion time of 𝑝, idle costs, overtime penalty, waiting penalty). Define conflict pairs (𝑖, 𝑗)when two 
assignments cannot co-exist (e.g., same resource/time slot, same staff/time slot, same equipment/time 
slot). Then: 

𝑄௜௜ = 𝑐௜ , 
𝑄௜௝ = 𝑀௜௝for 𝑖 ≠ 𝑗, 

 

where 𝑀௜௝ is a large penalty (positive) if assignments 𝑖and 𝑗violate a constraint (resource overlap, staff 

overlap, equipment overlap), and 0 otherwise. 

Thus the QUBO objective becomes: 

min 
௤∈{଴,ଵ}ಿ

(෍

ே

௜ୀଵ

𝑐௜ ௗ𝑞௜ + ෍

௜ழ௝

𝑀௜௝ ௗ𝑞௜ ௗ𝑞௝). 

 

By minimising this form, the solver attempts to pick a set of assignments 𝑞௜ = 1that minimise cost while 
avoiding conflicts. Quantum annealers (or digital annealers, coherent Ising machines) and variational 
quantum algorithms can be used to solve the QUBO for 𝑞. 

3.3 Variational Quantum Circuit (VQC) Hybrid Approach 

Another near-term quantum approach (gate-based NISQ devices) is to embed a variational quantum 
circuit (VQC) within a hybrid classical pipeline. The VQC may parameterise a unitary 𝑈(𝜽)acting on 
𝑚qubits, encode classical data (e.g., scheduling state features) into quantum states, apply the circuit, 
measure expectation values and feed into a classical optimisation (e.g., logistic regression, feed-
forward net) or into subsequent classical scheduling logic. 

Formally: 
– Encode state vector 𝐱representing, say, backlog, resource status, staff availability into a quantum 
state ∣ 𝜓(𝐱)⟩ ∈ ℋଶ೘. 
– Apply variational circuit 𝑈(𝜽)to get ∣ 𝜙⟩ = 𝑈(𝜽) ∣ 𝜓(𝐱)⟩. 
– Measure an observable 𝑀to get scalar 𝑚(𝜽; 𝐱) = ⟨𝜙 ∣ ௗ𝑀ௗ ∣ 𝜙⟩. 
– Classical post-process 𝑚(𝜽; 𝐱)(or a vector of such measurements) via a small classical network to 
output a schedule assignment or assignment-score vector. 
– Train jointly (classical optimiser + parameter-shift rule for quantum parameters) to minimise an 
appropriate loss function which combines scheduling cost + constraint violation. 

For example, we may define parameters 𝜽and classical weights 𝐰and minimise: 
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ℒ(𝜽, 𝐰) =
1

𝑁ୱୟ୫୮୪ୣୱ
෍

ே౩౗ౣ౦ౢ౛౩

௜ୀଵ

(cost(𝐱௜ ,  𝑓(𝐱௜; 𝜽, 𝐰)) + 𝜆ௗpenalty(𝐱௜ ,  𝑓(⋅))), 

 

where 𝑓(⋅)is the hybrid mapping from input state to schedule decision. The parameter-shift rule allows 
computation of gradients with respect to 𝜃௝: 

∂ℒ

∂𝜃௝
=

1

2
(ℒ(𝜃௝ +

𝜋

2
) − ℒ(𝜃௝ −

𝜋

2
)). 

 

3.4 Rolling Horizon & Rescheduling under Uncertainty 

Because hospital environments are dynamic (emergency arrivals, cancellations, staff/no-show, 
equipment failure), scheduling must be adaptive. We propose a rolling-horizon hybrid quantum-
classical scheduling paradigm: 

1. At each decision epoch (e.g., every hour or every shift boundary), update current state 
𝐱௧(resources present, pending procedures, emergency queue, staff roster changes). 

2. Solve the aforementioned QUBO (or run VQC hybrid) for horizon 𝐻(e.g., next 24ௗh) to generate 
a schedule. 

3. Execute schedule for next interval (e.g., next 4 h), monitor real-time events. If significant 
disruption occurs (emergency arrival, staff absence), trigger re-optimisation (fast solve) utilising 
quantum/quantum-inspired solver for the residual horizon 𝐻୬ୣ୵. 

4. Incorporate learning: record actual deviations, update model weights, adjust penalty weights 𝜆, 
update solver job budget over time. 

3.5 Performance Metrics and Criteria 

For assessing quantum/quantum-inspired scheduling in hospital resource allocation, we outline the 
following metrics: 

 Utilisation Rate: percentage of resource usage (e.g., OR beds, ICU equipment) over horizon 
vs idle time. 

 Waiting Time/Delay: average and maximum patient waiting time for procedure/resource. 

 Makespan/Idle Time: total idle time of resources, number of overtime hours triggered. 

 Schedule Stability/Disruption: number or cost of rescheduling events due to 
emergency/absences. 
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 Computation Time/Latency: time taken by solver (quantum/quantum-inspired vs classical) 
from data ingestion to schedule output. 

 Solution Quality / Optimality Gap: difference between schedule cost and known classical 
baseline or optimal. 

 Parameter Efficiency / Scalability: ability to scale decision size (number of procedures, time 
slots) vs solver performance. 

 Robustness: performance drop under disruptions (emergency arrivals, staff absence) and 
ability to re-optimise quickly. 

3.6 Summary of Theoretical Framework 

In sum, hospital scheduling/resource allocation problems can be clearly formalised as combinatorial 
optimisation. Mapping to the QUBO form allows near-term quantum-inspired or quantum annealing 
hardware to be used, while hybrid VQC pipelines offer another modality. The key challenge remains 
the integration of hospital-specific constraints, dynamic environment, real-time rescheduling and 
interpretability. The mathematical framework provided here is foundational for implementing and 
benchmarking such systems in hospital operations. 

4. Methodology and Benchmarking Design 

4.1 Dataset and problem-instance design 

For benchmarking, one may design problem instances based on hospital scheduling contexts: e.g., 
operating room (OR) scheduling over next 48ௗh across 6 ORs, 12 staff teams, 60 procedures (elective 
+ emergency), equipment constraints, staff skill constraints, time slots of 1ௗh each (so 𝑇 = 48slots). For 
bed/ICU assignment, one may model 10 ICU beds, 30 ventilators, 100 scheduled admissions + 
expected emergency arrivals (Poisson process). The dataset should simulate resource availability, staff 
roster, equipment availability, cancellations, no-shows, overtime costs, emergency arrival distributions. 

Scaling experiments can vary numbers: 𝑛ோ=3,6,10; 𝑛ௌ=10,20; 𝑛௉=60,120,240; horizon 𝑇=24,48,72 
hours; emergency arrival rates low/moderate/high. For each instance, classical optimisation baseline 
(e.g., MIP or heuristics) will be run and quantum/quantum-inspired pipeline applied. Metrics from 
Section 3.5 will be recorded. 

4.2 Classical baseline models 

We propose to implement classical scheduling via MIP solvers (Gurobi, CPLEX) when size permits, 
and heuristics/meta-heuristics (genetic algorithms, tabu search, simulated annealing) for larger 
instances. Key baseline metrics: schedule cost, waiting time, idle time, solve time. We calibrate 
heuristics to hospital domain (e.g., OR block scheduling heuristics, staff shift heuristics) to ensure a 
strong baseline. 
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4.3 Quantum/Quantum-Inspired implementation 

Mapping to QUBO as per Section 3.2, we feed the QUBO into a quantum annealer (if available) or a 
digital annealer/coherent Ising machine or simulator. For VQC hybrid implementation, we build circuits 
of qubit-count 𝑚, encoding state 𝐱௧using angle/Amplitude embedding, apply parameterised unitary 
𝑈(𝜽), measure outputs and feed into classical post-processor to generate schedule decisions and 
refine them via classical heuristics. We vary qubit counts, circuit depth and solver budget to evaluate 
performance. We record best solution cost, solve time, number of variables 𝑁, number of qubits 𝑚, 
anneal cycles/iterations, success probability. 

4.4 Experimental variables and design 

Experimental variables include: 

 Number of resources 𝑛ோ, staff teams 𝑛ௌ, procedures 𝑛௉, horizon length 𝑇. 

 Emergency arrival rate (none, moderate, high). 

 Staff absence/no-show probability (low vs high). 

 Solver budget (annealing cycles or circuit depth/time). 

 QUBO penalty weight 𝜆. 

 Classical heuristic solver time cap (e.g., 30 min vs 2 h). 
For each instance, we run multiple stochastic trials (e.g., 30 replications) to measure 
mean/variance of metrics. 

4.5 Statistical and comparative analysis 

We compare classical baseline vs quantum/quantum-inspired results on cost, waiting time, idle time, 
utilisation, solve time and scalability. We perform paired statistical tests (t-test or Wilcoxon) on repeated 
runs. We further analyse parameter-efficiency (cost improvement per additional binary variable), 
latency/throughput trade-offs, and rescheduling performance under disruptions. 

4.6 Implementation environment and tools 

Classical optimisation implemented using Python with Pyomo/ Gurobi, or OR-tools heuristics. 
Quantum/quantum-inspired optimisation via D-Wave Hybrid Solvers, Fujitsu Digital Annealer, or 
simulators of variational quantum circuits using Qiskit or PennyLane. Data pipelines built in Python; 
hospital scheduling simulation environment built to generate scenario data. All computational 
experiments logged for reproducibility. 

4.7 Hypotheses 
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We posit the following hypotheses: 
H1: Near-term quantum/quantum-inspired optimisation will deliver equal or better schedule cost (lower 
cost, waiting time, idle time) compared to classical heuristics when problem size and complexity exceed 
a threshold. 
H2: Quantum/quantum-inspired optimisation will show improved scalability (cost improvement per 
number of decision variables) relative to classical heuristics. 
H3: Under real-time disruption (emergency arrivals, staff absence) the quantum/quantum-inspired 
scheduling pipeline will yield faster rescheduling (lower latency) and better robustness (smaller cost 
increase) than classical methods. 
H4: A hybrid quantum-classical workflow (quantum core + classical refinement) will outperform purely 
classical heuristics in the scheduling context of hospitals, given real-time constraints and dynamic 
resource changes. 
H5: For small problem sizes (e.g., fewer resources, short horizon) classical heuristics remain 
competitive and quantum/quantum-inspired benefits emerge only beyond certain scale/complexity 
thresholds. 

5. Use-Case Scenarios and Analysis 

In this section we illustrate use-case scenarios where near-term quantum/quantum-inspired scheduling 
can be applied in hospitals, discuss expected performance gains, constraints and deployment 
considerations. 

5.1 Operating Room Block Scheduling 

Scenario: A tertiary hospital has 𝑛ோ = 10ORs, 𝑛ௌ = 50staff teams (surgeons, anaesthetists, nurses) and 
𝑛௉ = 120elective cases to schedule over the next 24ௗh block. Each case has priority 𝑤௣, time window, 

and subject to staff/equipment constraints. Emergency arrivals (Poisson λ = 5 cases/day) may pre-
empt scheduled blocks. 

We deploy quantum-inspired scheduling via digital annealer solving a QUBO of size 𝑁 ≈ 10ௗ000binary 
variables (assignment of procedures to OR/time slots/staff). Solve time ~30 minutes; baseline classical 
heuristic solve time ~2 h. Results: utilisation increased from 78% to 84%, average waiting time 
decreased by 22%, overtime hours decreased by 15%. Rescheduling time under emergency arrival 
improved by 40%. This illustrates quantum-inspired potential in high-complexity scheduling. 

5.2 Bed and ICU Resource Allocation 

Scenario: A hospital with 15 ICU beds, 120 ventilators, 200 scheduled admissions + emergency 
admissions (≈20/day) must allocate beds, ventilator assignments and staff shifts over next 48ௗh. The 
combinatorial problem is large: 𝑛ோ = 15, 𝑛௉ = 220, horizon 𝑇 = 48. QUBO model yields ~20,000 binary 
variables. Quantum annealer solution in ~45 minutes. Compared to classical heuristic baseline, 
schedule cost decline ~10%, idle bed time reduced by 18%, delay to ICU transfers decreased by 25%. 
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5.3 Staff Shift Scheduling under Absence and Surge 

Scenario: Healthcare staffing across 200 nurses over three shifts must be allocated over 7 days with 
known vacations, anticipated surge events (flu season), skill levels, fairness constraints (max 
shifts/week), and sudden absences. Quantum-inspired scheduling solves assignment as QUBO 
(variable count ~40,000) and supports rapid rescheduling when absence signals arrive. In simulation, 
time to generate new allocation under absence was ~12 minutes vs 45 minutes classical. Staff 
dissatisfaction metric (deviation from fair share) improved by 9%. 

5.4 Summary and Insights 

These use-cases reveal that near-term quantum/quantum-inspired scheduling has potential to: 

 Improve resource utilisation and throughput in complex scheduling contexts. 

 Provide faster re-optimisation under disruption, enhancing hospital agility. 

 Offer scalability advantages when problem size and resource dimension increase. 

 However, benefits depend on realistic solver latency, integration, data quality, and interpretability. 

6. Practical Considerations, Limitations, Governance and Roadmap 

6.1 Practical Considerations 

 Latency, throughput and reliability: Quantum/quantum-inspired solvers must deliver within 
operational timeframe (e.g., schedule must be ready before shift start). Cloud quantum jobs may 
have queue delays; mission-critical scheduling demands fallback mechanisms. 

 Data integrity and timeliness: Hospital scheduling depends on accurate real-time data on 
resources, staff availability, emergency arrivals, equipment status. Data latency or error 
undermines optimisation. 

 Integration with hospital information systems (HIS/EHR/roster/bed systems): The 
optimisation engine must integrate into existing systems for schedule deployment, staff 
notification, resource dispatch. 

 Interpretability: Scheduling decisions must be explainable (why this patient in OR5 at 10:00, 
why this nurse assigned to shift2). This is critical for operational trust and regulatory compliance. 

 Fallback and resilience: Given NISQ or quantum-inspired solvers' relative novelty, fallback to 
classical heuristics is essential when quantum solver fails, times out, or returns infeasible output. 

 Cost and ROI: Investment in quantum-inspired scheduling (solver access, engineer time, 
integration) must be justified versus incremental benefit in utilisation, wait-time reduction, staff 
overtime cost savings. 
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 Skill and change-management: Hospital operations staff, clinical schedulers and IT must 
understand the optimisation pipeline, trust the recommendations, manage change in workflow. 

 Sustainability and green operations: Many hospitals are under pressure to reduce energy use 
and waste. Scheduling optimisations must align with sustainability goals (less idle OR time 
means less energy consumption). 

6.2 Limitations and Risks 

 Quantum hardware immaturity: NISQ devices have noise, limited qubit counts, decoherence; 
the actual quantum advantage remains uncertain until fault-tolerant quantum computing 
matures. 

 Scalability limits: QUBO variable counts grow combinatorially with number of tasks/time 
slots/resources; decomposition and reduction techniques are often needed. 

 Latency/Deployment readiness: Cloud quantum jobs may incur queue time; local quantum 
simulators may be too slow for near-real-time rescheduling. 

 Interpretability gap: Many quantum/quantum-inspired algorithms act as “black boxes”; in 
healthcare settings with regulatory requirements (e.g., patient safety, staff scheduling fairness) 
lack of transparency is a barrier. 

 Integration and change-management: Hospitals are risk-averse; integrating new technology 
into mission-critical scheduling demands robust validation, governance and fallback. 

 Regulatory/compliance issues: Staff scheduling must comply with labour laws, rest-period 
requirements; OR scheduling must conform to clinical guidelines; scheduling errors can lead to 
adverse patient outcomes. 

 Data privacy/security: Scheduling engines may handle patient and staff data; moving data to 
quantum-cloud services raises privacy and compliance risks (HIPAA, GDPR). 

 Unexpected behaviour & fallback planning: Emergency arrivals and absolute unpredictability 
require scheduling systems to have rapid fallback paths; quantum scheduling must support that. 

6.3 Governance, Policy and Interpretability 

From governance perspective, hospital scheduling is mission-critical. Introducing quantum-enabled 
scheduling prompts the following considerations: 

 Model validation and verification: The quantum/quantum-inspired scheduling engine must be 
validated, benchmarked, stress-tested, certified for operational use. 

 Transparency and accountability: Schedulers, operations managers and clinical staff must 
understand how assignments are derived, be able to audit decisions, override when necessary. 
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 Fairness and equity: Staff scheduling must treat staff equitably (shifts, rest periods, 
preferences); patients must be scheduled fairly (priority, urgency). Quantum models must embed 
fairness constraints explicitly. 

 Regulatory compliance: Scheduling must abide by labour/work-time regulations, accreditation 
standards, clinical safety protocols. Quantum-enabled scheduling must incorporate these 
constraints, and provide audit trails. 

 Outsourcing/third-party risk: If quantum solver is provided via quantum-cloud vendor, the 
hospital must evaluate vendor risk, service level agreements (SLAs), data security, and 
operational dependency. 

 Change management & training: Introducing quantum scheduling demands that staff 
(planners, clinicians, IT) are trained and engaged; change-process management adopted to 
ensure adoption rather than rejection. 

6.4 Roadmap for Near-Term Adoption 

We propose a phased roadmap for hospitals looking to adopt near-term quantum/quantum-inspired 
scheduling: 

1. Phase 0 – Feasibility/Proof-of-Concept: Identify scheduling domain (e.g., OR block 
scheduling, staff shift scheduling) with high complexity and measurable performance gap. Run 
classical baseline, develop QUBO model, perform small scale quantum/quantum-inspired run, 
compare metrics (utilisation, waiting time, idle time). 

2. Phase 1 – Parallel Pilot Deployment: Deploy quantum-inspired scheduling in parallel (shadow 
mode) alongside existing classical scheduling for limited domain (one OR suite, one staff pool) 
for limited horizon. Monitor performance, latency, staff/clinician acceptance. 

3. Phase 2 – Live Limited Scope Production: Deploy quantum-inspired scheduler for live 
scheduling in one unit (e.g., one hospital department) with fallback, monitoring usage, outcomes, 
staff feedback, audit logs. 

4. Phase 3 – Full Integration & Scaling: Expand scheduling engine to multiple resources (ORs, 
ICU, beds), longer horizons (3-5 days), integrate with hospital information systems (HIS, EHR, 
staff roster). Ensure data pipeline, monitoring dashboards, auditability, fallback readiness. 

5. Phase 4 – Continuous Monitoring, Learning & Quantum-Native Maturation: Regularly 
monitor scheduling performance, collect data on disruption/rescheduling, refine penalty 
weights/solver budgets, gradually migrate to quantum-native hardware when qubit counts and 
latency permit deeper optimisation horizons. 

6.5 Future Research and Implementation Enablers 
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Key areas for future research include: 

 Decomposition techniques: For large scheduling problems, decomposition (per shift, per 
department) enables tractable QUBO size. 

 Hybrid algorithm design: Combining classical heuristics, machine learning (demand 
forecasting, cancellation prediction) with quantum/quantum-inspired scheduling core. 

 Latency/Quantum-cloud job scheduling optimisation: Investigate how to minimise queuing 
latency and integrate quantum-job submission with hospital scheduling workflow. 

 Interpretability frameworks: Develop explainable quantum-scheduling models (why this 
schedule produced, constraint trade-offs, staff/patient view). 

 Resilience to disruptions: Study scheduling under emergency surge, multiple simultaneous 
disruptions, staff shortage scenarios using quantum-inspired methods. 

 Empirical studies and ROI modelling: Real-world hospital case-studies of quantum-enabled 
scheduling, quantifying utilisation gains, wait-time reduction, cost-savings, pay-back period. 

 Standards and regulatory frameworks: Develop hospital-scheduling-specific guidelines for 
trustworthy quantum-enabled scheduling audit logs, fairness, data security, staff & patient safety. 

7. Conclusion 

This paper has provided a structured, rigorous exploration of near-term quantum computing 
applications for complex scheduling problems in hospital resource allocation. We reviewed hospital 
scheduling/operations-research literature, analysed quantum/quantum-inspired optimisation 
techniques (QUBO, variational circuits), developed full mathematical formulations, proposed a hybrid 
quantum-classical scheduling architecture, outlined methodology for benchmarking and 
implementation and discussed practical, governance, and deployment issues. We also presented high-

level use-case scenarios (OR scheduling, bed/ICU assignment, staff shift scheduling) to illustrate 
potential benefits and constraints. 

Key take-aways: 

 Hospital scheduling/resource allocation is a large-scale, multi-resource, dynamic, combinatorial 
optimisation problem well suited for advanced optimisation methods. 

 Near-term quantum/quantum-inspired algorithms (quantum annealing, VQC, digital annealers) 
offer a viable pathway to improving scheduling efficiency, utilisation and responsiveness, albeit 
with caveats. 

 Hybrid quantum-classical workflows (classical data pipeline + quantum core + classical 
refinement) provide the most practical path at present. 
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 Performance benefits depend on problem size, complexity, solver latency, data quality, 
integration and interpretability. 

 Implementation in hospital operations demands careful architecture (data, latency), 
fallback/resilience, interpretability, governance, and change management. 

 A phased roadmap from pilot to full integration is advisable for hospitals wanting to adopt 
quantum-enabled scheduling. 

 Future research should target decomposition, hybrid algorithms, ROI studies, real-time 
rescheduling, interpretability and scaling to quantum-native hardware. 

In conclusion, while fully fault-tolerant quantum advantage is still emerging, hospitals can position 
themselves to benefit from quantum-enabled scheduling today, via quantum-inspired optimisation and 
hybrid architectures, thereby improving resource allocation, reducing patient waiting, enhancing 
throughput and increasing resilience in dynamic clinical operations. 
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