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Abstract 
This paper presents a comprehensive framework for integrating Quantum Machine situating the 
problem: rising healthcare costs and the increasing complexity of health-claims data demand more 
powerful predictive models than standard generalized linear models (GLMs) alone can reliably 
deliver. We review classical actuarial techniques and contemporary Learning (QML) into actuarial 
prediction pipelines for health insurance. We begin by machine learning (ML) practices in 
healthcare-cost and claims prediction and summarize the current state of quantum computing and 
QML with special attention to algorithms and methods applicable in the near-term (NISQ) era. We 
then introduce a hybrid quantum–classical actuarial pipeline (HQCAP) that maps actuarial targets 
(claim frequency, severity, high-cost utilizers, readmission risk) to QML model families (quantum 
kernel methods, variational quantum circuits, and quantum-enhanced optimization), together with 
detailed data-encoding strategies, loss functions and calibration techniques appropriate for 
insurance. We present an experimental plan (datasets, baselines, metrics) for evaluating HQCAP 
on representative healthcare cost and claims problems (using MEPS/MIMIC public datasets and 
synthetic insurance-claims data), and discuss implementation considerations (noise, qubit counts, 
simulators, software stacks), regulatory and auditability constraints, interpretability and fairness, 
and an economic analysis of when QML could be preferable to classical approaches. We close with 
limitations, open research directions, and practical recommendations for actuaries and insurers 
exploring QML today. Key contributions: (1) a detailed, implementable hybrid QML/actuarial 
workflow; (2) explicit mapping between actuarial targets and QML primitives; and (3) 
reproducible experimental protocols for academic and industry evaluation. 

Keywords: quantum machine learning, actuarial science, health insurance, generalized linear 
models, variational quantum circuits, quantum kernels, high-cost patient prediction, hybrid 
quantum-classical pipelines. 

1. Introduction 

Health insurers and actuaries face three interlocking pressures: (1) healthcare expenditures 
continue to consume a substantial and rising share of national economic resources; (2) claims data 
have grown in dimensionality and heterogeneity (structured EHR fields, medical codes, temporal 
sequences, text notes), and (3) regulatory expectations and the need for transparent, auditable 
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pricing and reserve models intensify. Public data sources such as the Medical Expenditure Panel 
Survey (MEPS) document the scale and complexity of health expenditures and insurance coverage 
patterns in the U.S. (Agency for Healthcare Research and Quality, n.d.), and clinical datasets such 
as MIMIC illustrate the richness (and noisiness) of medical records that feed predictive systems 
(Johnson et al., 2016). 

Classical actuarial toolkits GLMs, GLMMs, credibility and compound distribution models remain 
workhorses for frequency–severity modeling and reserving, but modern machine learning methods 
(tree ensembles, gradient boosting, neural networks) have demonstrated improvements in 
predictive accuracy for high-cost utilizers and readmission risk. At the same time, explainability, 
reproducibility and auditability remain critical in high-stakes insurance decisions. These trends 
motivate exploration of alternative computational paradigms, especially as quantum computing 
matures and quantum machine learning (QML) matures from theoretical proposals to early 
experimental implementations (Goldburd et al., 2016; Society of Actuaries, 2021). 

Quantum computing offers novel algorithmic tools quantum kernel methods, variational quantum 
circuits (VQCs), quantum annealing/optimization that exploit quantum state spaces, entanglement 
and interference. Whether and when these capabilities translate to actuarial advantage is an 
empirical question; the literature shows both promising theoretical results and cautious realism 
about hardware constraints (NISQ era). This paper aims to move the question from hypothesis to 
practice by (i) surveying relevant QML primitives for actuarial tasks; (ii) proposing concrete 
hybrid models and training pipelines tailored to claims and cost prediction; and (iii) laying out an 
experimental roadmap and policy-aware deployment guidance for researchers and practitioners 
(Biamonte et al., 2017).  

2. Background and Related Work 

2.1 Actuarial modeling in health insurance: classical foundations 

The actuarial modeling stack for non-life and health insurance typically separates (a) claim 
frequency (e.g., count models), (b) claim severity (continuous, heavy-tailed modeling), and (c) 
portfolio-level reserve and capital computations (compound distributions, tail risk measures). 
Generalized Linear Models (GLMs) and their mixed-model extensions remain the dominant, well-
documented approach for rating, reserving and credibility; GLMs provide transparent link 
functions (log, identity) and distribution families (Poisson, Negative Binomial, Gamma) matched 
to claim count/size properties. Actuarial monographs and CAS guidance provide practical recipes 
for building ratemaking GLMs, diagnostics, and credibility considerations (Goldburd et al., 2016). 

However, real-world health claims often exhibit overdispersion, excess zeros, temporal 
dependence and complex interactions between covariates (diagnoses, procedures, socio-
demographics, temporal features). Hybrid GLMs, generalized additive models, and machine-
learning methods (random forests, gradient boosting) have gained traction insofar as they can 
capture nonlinearities and interactions while augmenting actuarial practice with improved 
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predictive performance provided interpretability and calibration are carefully handled (Samuel, 
2021). 

2.2 Machine learning in health insurance: recent evidence 

Published studies show improved predictive performance for cost and utilization tasks using 
supervised ML methods (ensemble methods, neural networks, hybrid pipelines) relative to 
classical regression baselines for tasks such as identifying high-cost patients and predicting 
readmissions. Public and administrative datasets (MEPS, MIMIC, insurer data) have become 
standard testbeds. Important operational metrics for insurers include MAE/RMSE for cost 
prediction, AUC and precision/recall for classification tasks, calibration (Brier score), and domain-
specific economic metrics (expected claim cost error, mispricing consequences) (Samuel, 2023). 

At the same time, policy and governance literature emphasizes that black-box models must be 
handled with caution for high-stakes decisions; interpretable models or explainability techniques 
like SHAP are widely used to bridge predictive power and transparency needs (Lundberg & Lee, 
2017). 

2.3 Quantum computing and quantum machine learning: essentials 

Quantum computing encodes information in quantum bits (qubits) whose state spaces scale 
exponentially with qubit count. For machine learning, two broad families of QML approaches are 
commonly discussed: (1) Quantum-enhanced kernel methods use quantum feature maps to map 
classical inputs into large quantum Hilbert spaces and estimate kernel inner products efficiently on 
quantum hardware; and (2) Variational Quantum Algorithms (VQAs) hybrid quantum–classical 
circuits parameterized by gates, trained with classical optimizers to minimize empirical losses 
(quantum variational classifiers/regressors, quantum neural networks). There are also quantum 
annealing approaches applicable to combinatorial optimization problems. The QML field 
combines theoretical proposals (examples: quantum SVM, quantum kernel estimation) and NISQ-
era practical demonstrations. Reviews and benchmarks provide a balanced account of 
opportunities and constraints (Biamonte et al., 2017; Rebentrost et al., 2014). 

Key practical constraints: current NISQ hardware is noisy with limited qubit counts and gate 
depths; data encoding costs and measurement sampling introduce overhead; and quantum 
advantage remains case-dependent and generally limited to carefully chosen problems. 
Nonetheless, near-term hybrid strategies (quantum feature maps + classical readouts, shallow 
VQCs) have been experimentally implemented for classification/regression problems (Pérez-
Salinas et al., 2020). 

2.4 Prior work linking quantum computing to finance and insurance 

Quantum methods have attracted attention in finance (portfolio optimization, option pricing) and 
early exploratory work has begun to address insurance- and actuarial-specific problems. Recent 
preprints and journal articles introduce the term quantum computational insurance, present 
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theoretical adaptations (mortality models, reinsurance allocation), and report small-scale 
demonstrations of quantum algorithms on insurance-relevant tasks. The Society of Actuaries has 
published industry-facing analyses that identify actuarial modeling tasks potentially amenable to 
quantum acceleration while urging careful attention to reproducibility and auditability. These 
documents set the stage for serious experimental work connecting QML primitives to actuarial 
targets (Liu et al., 2024; Society of Actuaries, 2023). 

3. Problem Formulation: Actuarial Targets and QML Mapping 

We formalize three canonical actuarial prediction tasks in health insurance and propose 
corresponding QML approaches: 

1. Claim occurrence / frequency (binary or count) 
Objective: predict whether a policyholder will lodge a claim in a given period (binary 
classification) and/or number of claims (count regression). 
Classical baseline: logistic regression (binary) or Poisson/Negative Binomial GLM 
(counts). 
QML proposal: (a) Variational quantum classifier (VQC) for binary classification (with 
cross-entropy loss); (b) Quantum kernel regression (QKR) or quantum kernel ridge 
regression for count regression after link-transforming counts (e.g., predict log-count). 

2. Claim severity / cost (continuous, heavy-tailed) 
Objective: predict the size of claims or total expenditure per insured unit. 
Classical baseline: GLM with Gamma family (log link) or Tweedie compound Poisson–
Gamma models in combined frequency–severity frameworks. 
QML proposal: Quantum kernel regression adapted to heavy-tailed targets (robust loss 
functions, Huber/quantile losses), or VQC-based regressors trained with appropriate losses 
(MAE, quantile loss) to capture tail behavior. 

3. High-cost utilizer identification & readmission risk (ranking/classification) 
Objective: identify the top x% of policyholders by predicted cost, or predict readmission 
within N days. 
Classical baseline: ensemble classifiers (XGBoost, Random Forests) with SHAP 
explanations. 
QML proposal: Quantum-enhanced feature maps + SVM / kernel logistic regression, 
focusing on improving separability in complicated feature geometries; or hybrid pipelines 
where a quantum kernel is used as a feature preprocessor for classical learners. 

Formally, let X∈Rn×pX \in \mathbb{R}^{n \times p}X∈Rn×p be the covariate matrix, yyy the 
target (binary, count, or continuous). QML approaches use a quantum feature map 
Φ:Rp→H2m\Phi: \mathbb{R}^p \to \mathcal{H}_{2^m}Φ:Rp→H2m implemented by a 
parameterized circuit UΦ(x)U_\Phi(x)UΦ(x) and then either (a) compute kernel inner products 
k(xi,xj)=∣ 0∣UΦ(xi)†UΦ(xj)∣0 ∣2k(x_i,x_j) = |\langle 0|U_\Phi(x_i)^\dagger 
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U_\Phi(x_j)|0\rangle|^2k(xi,xj)=∣ 0∣UΦ(xi)†UΦ(xj)∣0 ∣2 for kernel methods, or (b) prepare 
UΦ(x)∣0 U_\Phi(x)|0\rangleUΦ(x)∣0  then apply a parameterized ansatz V(θ)V(\theta)V(θ) and 
measure expectation values  M \langle M \rangle M  as features/outputs for a trained 
classifier/regresso. Havlíček et al. (2019) 

4. Hybrid Quantum–Classical Actuarial Pipeline (HQCAP): Design and Algorithms 

4.1 Overview of the pipeline 

HQCAP is organized into five stages: 

1. Data ingestion & governance (raw claims, EHR, enrollment, sociodemographics). Apply 
strict de-identification and privacy-preserving practices; construct time-windowed features 
(recent utilization, diagnosis counts, drug exposures), encode categorical codes (ICD/CCS) 
with embedding strategies or derived clinical groupings. Public datasets such as MEPS (for 
expenditure modeling) and MIMIC (for clinical risk modeling) are suitable testbeds for 
academic studies.  

2. Preprocessing & feature engineering (temporal aggregation, one-hot/target encoding, 
interaction terms). For QML, we must additionally consider feature scaling to match 
quantum encoding schemes (angles in rotation gates are typically scaled to 
[0,2π][0,2\pi][0,2π] or normalized to [−1,1][-1,1][−1,1]). 

3. Quantum encoding   select encoding strategy: amplitude encoding (compact but 
expensive state-preparation), angle/rotation encoding (practical for NISQ), or data re-
uploading (repeatedly encoding inputs throughout the circuit to increase expressivity with 
fewer qubits). Data re-uploading has demonstrated strong expressivity with shallow 
circuits and is a candidate for NISQ-era actuarial tasks (Pérez-Salinas et al., 2020). 

4. Modeling   choose QML primitive(s) and baselines. Examples: quantum kernel SVM for 
stratification; VQC regressors for severity forecasting; hybrid pipelines where quantum 
kernels feed into classical gradient-boosted trees as meta-features. 

5. Evaluation, calibration & explainability   compute standard ML metrics plus actuarial-
specific diagnostics (Gini for portfolio selection, calibration plots, Brier score). Apply 
explainability tools (SHAP or inherently interpretable models) to ensure decision 
transparency and regulatory auditability (Lundberg & Lee, 2017). 

A compact pseudocode for training a hybrid VQC regressor follows: 

Algorithm HQCAP_VQC_Regressor 

Input: X_train, y_train, X_val, y_val, encoding_scheme, ansatz_arch, optimizer, epochs 

1. Normalize X_train/X_val for encoding_scheme 
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2. For each epoch: 

   a. For batch in training data: 

      i. Prepare quantum circuit: U_encode(x_batch) -> ansatz(theta) 

      ii. Execute on simulator/hardware: measure expectation <M> 

      iii. Compute loss L(model(<M>), y_batch) 

      iv. Compute classical gradient: dθ <- optimizer.step(∇_θ L) 

   b. Evaluate validation loss and calibration metrics 

3. Return trained θ and evaluation metrics 

4.2 Data encoding and feature maps 

Practical encoding choices (with actuarial sensibilities): 

 Angle/rotation encoding: map normalized feature xxx to a rotation Ry(αx)R_y(\alpha 
x)Ry(αx) or product formula. It's robust and low-overhead for near-term devices. 

 Amplitude encoding: maps an NNN-dimensional vector into log 2(N)\log_2(N)log2(N) 
qubits, but state-preparation circuits cost scales; better suited to fault-tolerant future 
hardware. 

 Data re-uploading: interleave encoding layers and trainable rotations to increase 
expressivity without many qubits useful when p is large but qubit resources are limited. 
Benchmarking studies show strong expressivity for classification and regression tasks with 
data re-uploading circuits (Pérez-Salinas et al., 2020). 

4.3 Quantum model choices and loss functions 

Binary / multi-class classification 

 VQC with softmax-like classical postprocessing; loss = binary cross-entropy or categorical 
cross-entropy. 

 Quantum kernel SVM with hinge loss in classical optimization; the kernel matrix is 
estimated by repeated measurements of fidelity inner products on quantum devices. 
Havlíček et al. lay out quantum kernel estimation techniques and experimental 
implementations Havlíček et al. (2019) 

Regression / severity modeling 

 VQC regressor trained with MAE, MSE, or Huber loss (to handle outliers). For heavy-
tailed costs, quantile regression (pinball loss) is recommended to model tails of distribution 
(e.g., 90th percentile predictions for high-cost identification). Quantum kernel ridge 



           Page 21 of 28 
 
 

 

 
Artificial Intelligence, Quantum Computing, Robotics, Science and Technology Journal.                      (Volume-III, Issue-1, 2025) 

regression is a natural alternative, but regularization (ridge penalty) must be tuned carefully 
given quantum sampling noise (Cerezo et al., 2021; Preskill, 2018). 

Frequency–severity compound modeling 

 Two-stage hybrid: quantum model for frequency (predict expected claim count) + classical 
or quantum regressor for severity; combine via compound distribution (e.g., expected 
aggregate cost = E[∑i=1NSi]=E[N]E[S]\mathbb{E}[\sum_{i=1}^N S_i] = 
\mathbb{E}[N]\mathbb{E}[S]E[∑i=1NSi]=E[N]E[S] under independence assumptions) 
or via direct modeling of total cost using Tweedie/Gamma frameworks adapted by 
quantum-enhanced feature maps. 

4.4 Optimization, error mitigation, and training strategies 

Training VQCs is done with classical optimizers (SPSA, Adam, COBYLA) and can be sensitive 
to barren plateaus (flat gradients). Strategies include careful initialization, layerwise training, and 
problem-aware ansatz design. Error mitigation (readout error calibration, zero-noise extrapolation) 
and circuit transpilation to native gates can reduce measured noise effects. On device, 
measurement shot counts determine kernel estimation variance; these sampling costs must be 
budgeted as part of experimental evaluation. Reviews of VQAs and NISQ considerations provide 
practical guidance for implementation (Cerezo et al., 2021; Preskill, 2018). 

5. Experimental Protocol: Datasets, Baselines, Metrics, and Practical Constraints 

5.1 Datasets 

Recommended starting datasets: 

 MEPS (Medical Expenditure Panel Survey)   national household-level expenditures and 
insurance variables; suitable for modeling annual per-person expenditures and enrollment-
level cost. Publicly available and widely used for insurance expenditure research.  

 MIMIC (MIMIC-III / MIMIC-IV)   de-identified ICU/EHR data for clinical prediction 
(readmission risk, resource utilization). Useful for readmission/risk models though not a 
direct insurance-claims dataset (Johnson et al., 2016). 

 Synthetic claims dataset   construct a realistic synthetic non-life/health claims portfolio 
with frequency and severity drawn from Poisson (or zero-inflated Poisson) and heavy-
tailed severity (log-normal or Pareto), with covariate relationships embedded for controlled 
experiments. Synthetic datasets are essential for stress-testing QML models under known 
ground truth and reproducibility. (See open repositories and prior work for synthetic data 
templates.) 

5.2 Baselines 

 GLM/GLMM with appropriate family/link (Goldburd et al., 2016). 
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 Gradient Boosting (XGBoost/LightGBM). 

 Random Forests / Neural Networks. 

 Kernel ridge regression / classical SVM with tuned kernels. 

5.3 Evaluation metrics 

 Regression: MAE, RMSE, R², calibration (reliability curves), tail-focused metrics (90th 
percentile MAE), quantile losses. 

 Classification: AUC-ROC, precision@k, recall@k, F1, calibration/Brier score, lift/gain 
charts relevant for targeting top x% high-cost individuals. 

 Actuarial-economic: expected mispricing cost, reserve error, capital requirement 
sensitivity, and value-of-information analyses comparing model improvement vs. 
operational/computational cost. 

5.4 Hardware and simulation 

Given current hardware constraints, experimental runs should begin on high-fidelity simulators 
(statevector and sampling simulators) with noise models, then transition to cloud quantum 
processors (IBM, Rigetti, IonQ, Xanadu) for selected small-scale experiments. Carefully 
document qubit counts, circuit depths, transpilation details and measurement shot budgets. The 
Society of Actuaries and published "quantum computational insurance" works emphasize the need 
to quantify error, reproducibility and auditability when applying these tools to actuarial questions 
(Society of Actuaries, 2023). 

6. Practical Implementation: Software, Resource Estimates, and Reproducibility 

6.1 Software stack 

 Quantum SDKs: Qiskit (IBM), PennyLane (Xanadu), Cirq (Google), and hybrid 
frameworks are suitable. Pennylane is particularly convenient for differentiable hybrid 
quantum–classical optimization and interfacing with PyTorch/TensorFlow. 

 Classical libraries: scikit-learn, XGBoost, LightGBM, and standard actuarial toolkits (R 
actuarial packages, CAS materials). 

 Reproducibility: containerized experiments (Docker), version controlled notebooks, seed 
setting for random number generators, and publishing of circuit definitions, seed states, 
and raw measurement data. 

6.2 Resource estimates (rule-of-thumb) 
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 Qubit count: angle encoding/data re-uploading pipelines can start with ~4–16 qubits for 
toy problems; kernel methods that require explicit Hilbert-space mapping may need more 
qubits if feature expansion is large. 

 Circuit depth: keep circuit depth shallow (tens of gates) to be compatible with NISQ 
devices; deeper circuits increase noise and training instability. 

 Sampling: kernel estimation and expectation-value measurements typically require 
thousands of shots for low-variance estimates; factor this into cost and wall-time budgets. 

6.3 Reproducibility & audit trails 

Insurance and regulatory contexts require model auditability. For QML models, record: exact 
quantum circuits (gate list, parameter schedules), measurement shot seeds, transpiled gate 
sequence on target hardware, error mitigation steps and calibration runs. Store raw measurement 
outputs and classical postprocessing pipelines to enable independent validation. The SOA 
guidance highlights reproducibility as an industry priority when experimenting with quantum 
technologies (Society of Actuaries, 2023). 

7. Evaluation Scenarios and Hypothetical Results 

Because full-scale hardware experiments are beyond the scope of this paper, we outline 
representative experimental scenarios, expected results, and interpretation templates. 

7.1 Scenario A   Claim frequency classification (binary: any claim) 

 Dataset: MEPS-derived yearly per-person features, binary target = one or more claims in 
year. 

 Approach: VQC classifier with rotation encoding and data re-uploading vs logistic 
regression and XGBoost. 

 Expected observations: 

o On low-dimensional, highly separable datasets, VQC and classical kernels perform 
similarly. 

o On datasets with complex nonlinear interactions, quantum kernel or re-uploading 
VQCs can in principle improve separability, but gains over tuned gradient-boosted 
trees are uncertain and dataset-dependent. Benchmarking literature shows that 
quantum kernels can outperform classical kernels on constructed problems, yet 
real-world advantages are still rare and sensitive to feature maps and noise 
(Schnabel et al., 2025). 

7.2 Scenario B   Cost regression (severity) 
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 Dataset: Synthetic heavy-tailed claim severities linked to covariates; validate on MEPS 
totals. 

 Approach: Quantum kernel ridge regression (with robust loss) vs GLM (Gamma) and 
gradient boosting regression. 

 Metric: MAE for median and 90th percentile, calibration of aggregate portfolio estimates. 

 Expected observations: QML methods may capture subtle nonlinear covariate 
interactions but must be regularized to avoid overfitting; sample complexity and noise-
induced variance may limit practical gains on hardware. 

In all scenarios, we recommend presenting results as (i) standard metric tables, (ii) 
calibration/reliability plots, (iii) lift/gain charts for top-k targeting, and (iv) cost-benefit plots 
showing value of improved predictions vs quantum runtime and sampling costs. If QML methods 
show modest improvement in AUC or MAE, the insurer should evaluate whether the improvement 
justifies operational and regulatory costs. 

8. Interpretability, Fairness, and Regulatory Considerations 

Actuarial models are subject to regulatory review and must be explainable, auditable and free of 
discriminatory biases. Black-box QML models create unique challenges: 

 Interpretability: Quantum states and circuits are not directly interpretable by domain 
experts. Therefore, HQCAP must couple QML predictions with classical explainability 
workflows (e.g., SHAP applied to features or to classical meta-models built on quantum 
outputs) or incorporate inherently interpretable architectures (sparse linear postprocessing 
on measured observables). Lundberg & Lee’s SHAP framework is useful but must be 
carefully applied to quantum-derived features (Lundberg & Lee, 2017). 

 Fairness and bias: Validate model performance across protected subgroups (age, gender, 
socioeconomic status), check calibration by subgroup, and enforce fairness constraints 
when necessary. Actuarial fairness concerns are prominent in health contexts and require 
statistical and operational safeguards. 

 Reproducibility & stability: Regulators expect consistent, auditable outputs. QML 
models must provide reproducible measurement logs, seeds and documentation of error 
mitigation steps so that actuaries can reproduce key model decisions. 

 Governance: Model risk management frameworks must be extended to cover quantum-
specific risk (hardware-induced stochasticity, sampling variance, algorithmic non-
determinism) and establish acceptance thresholds for production deployment. The SOA’s 
research highlights these needs for actuarial usage of quantum computing (Society of 
Actuaries, 2023). 
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9. Economic and Operational Analysis 

Deploying QML in production imposes costs (development, quantum cloud access, measurement 
latency) but also potential benefits (improved predictions, faster optimization for reinsurance 
allocations, better targeting). Insurers should perform an expected value of experimentation (EVE) 
analysis that balances model performance gains against: 

 compute costs (quantum cloud fees + classical infrastructure), 

 engineering & operational overhead, 

 regulatory compliance costs, 

 and potential upside (reduced loss ratio, improved reserve accuracy). 

Small, well-scoped pilot projects (e.g., reinsurance allocation or re-parameterization of mortality 
models) are economically prudent starting points. Recent studies in finance show quantum 
methods may yield improvements for certain combinatorial optimization and portfolio problems 
analogous problems in reinsurance or portfolio-level risk allocation could be practical early wins 
(Biamonte et al., 2017). 

10. Limitations and Future Directions 

Limitations. Current QML is constrained by: noise (gate and readout errors), limited qubits and 
circuit depth, data encoding costs, and the need to acquire large shot counts for low-variance 
estimates. Empirical benchmarks indicate that quantum advantage for general-purpose supervised 
learning remains unproven on realistic datasets; gains are problem-specific. Industry adoption is 
further constrained by governance and interpretability requirements in regulated actuarial contexts 
(Biamonte et al., 2017). 

Recommendations for future research. 

 Rigorous benchmarking of quantum kernels and VQCs vs tuned classical ensembles on 
public healthcare datasets (MEPS, MIMIC) with reproducible pipelines. 

 Development of interpretable quantum–classical hybrid models designed for auditability 
(e.g., sparse linear readouts on measured observables with SHAP-like post hoc 
explainability). 

 Research into quantum algorithms tailored to actuarial problems: mortality forecasting 
(Lee–Carter parameter estimation), reserve tail simulation, and large-scale reinsurance 
allocation (QUBO formulations). Recent work has already begun exploring these 
directions (Liu et al., 2024). 

11. Conclusion 
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Quantum Machine Learning offers conceptually intriguing tools for actuarial predictions in health 
insurance quantum feature spaces, variational circuits and quantum optimization map naturally to 
classification, regression and combinatorial optimization tasks common in actuarial work. Yet 
near-term practical advantages are neither automatic nor guaranteed: they require careful problem 
selection, resource-aware circuit design (data re-uploading, shallow ansätze), robust error-
mitigation, and strict governance to satisfy actuarial auditing regimes. The hybrid quantum–
classical actuarial pipeline (HQCAP) presented here offers a concrete, reproducible blueprint for 
researchers and industry teams to evaluate QML on real insurance problems: start with 
reproducible benchmarks on MEPS/MIMIC/synthetic datasets, compare against strong classical 
baselines, document circuits and measurement logs for auditability, and only consider production 
deployments after regulatory and economic justifications. The field sits at an exciting inflection 
point: with methodical, reproducible experimentation, we can discover where quantum resources 
offer material value to insurers and where classical methods remain preferable. 
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