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Abstract

Personalized insurance pricing requires robust estimation of conditional loss distributions from high-
dimensional, heterogeneous data (demographics, medical records, telematics, claims histories).
Classical ML techniques (gradient-boosted trees, deep neural networks, kernel methods) have
advanced personalization but face computational and statistical limits when data are extremely high-
dimensional, when nested Monte Carlo is required for capital calculations, or when richer uncertainty
quantification is necessary. Quantum Machine Learning (QML) including quantum kernel methods,
variational quantum circuits (VQCs), and amplitude-estimation-enabled Monte Carlo acceleration
provides new algorithmic pathways that may (a) embed rich feature representations in high-dimensional
Hilbert spaces, (b) offer different inductive biases than classical kernels, and (c) accelerate certain
expectation-estimation tasks relevant to risk metrics. This paper (1) synthesizes QML theory with
actuarial pricing objectives, (2) provides full mathematical formulations of candidate QML models and
their training procedures for premium estimation, (3) designs hybrid quantum—classical deployment
architectures suitable for insurers, (4) proposes reproducible experimental protocols and evaluation
metrics, and (5) discusses regulatory, ethical, and practical limitations (NISQ constraints, data loading,
governance).
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1. Introduction

Personalized premium calculation is an actuarial and data-science challenge that blends prediction,
uncertainty quantification, regulatory constraints, and business objectives. Traditional actuarial tools
(generalized linear models, credibility theory) have been augmented by modern machine learning to
produce individualized risk estimates based on telematics, health data, geospatial context, and claims
histories. However, insurers increasingly confront data that is: (i) high-dimensional (telemetry time
series, genomic markers), (ii) nonlinearly entangled (complex interactions across modalities), and (iii)
computationally demanding for risk metrics (nested simulations for tail risk and capital). Under this
regime, there is a practical incentive to explore algorithmic families beyond classical methods. Quantum
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computing and, specifically, quantum machine learning (QML) propose new algorithmic primitives
quantum-enhanced feature maps, variational circuits, and quantum amplitude estimation that can, in
theory, change computational scaling for selected problems (Havli¢ek et al., 2019; Cerezo et al., 2021;
Montanaro, 2015).

How can QML be formulated, implemented, evaluated, and governed so it meaningfully contributes to
personalized premium calculation today and on the roadmap to fault-tolerant quantum hardware? |
answer by (i) mapping actuarial targets to QML primitives, (ii) deriving mathematical formulations, (iii)
proposing hybrid architectures and deployment protocols, and (iv) designing empirical evaluation
procedures that quantify both statistical and economic value. | highlight realistic limitations (data-
loading costs, NISQ noise, algorithmic bottlenecks) and propose mitigation strategies. The Society of
Actuaries’ 2023 primer highlights actuarial opportunities and constraints for quantum computing; this
manuscript extends those industry-level observations into prescriptive technical designs (Society of
Actuaries, 2023).

2. Literature review (extended)
2.1 Classical actuarial and ML foundations for pricing

Actuarial pricing traditionally models a target loss variable Y(frequency, severity, aggregate loss)
conditional on covariates X. GLMs (Poisson, Gamma) and credibility adjustments remain widely used
due to interpretability and regulatory acceptance. The last decade has seen adoption of machine-
learning models (tree ensembles, neural networks) for granular segmentation and improved predictive
power; notable literature discusses benefits (improved fit, nonlinear interactions) and risks (overfitting,
fairness, interpretability) (Blier-Wong et al., 2020). For distributional forecasts, quantile regression,
Bayesian models, and ensemble methods are common.

2.2 Quantum machine learning: surveys and core primitives

QML literature includes two complementary families: (A) quantum-enhanced classical ML where
quantum circuits supply feature maps or kernel evaluations to classical learners (quantum kernels),
and (B) native quantum models trained in hybrid loops (variational quantum circuits acting as
parameterized function approximators). Comprehensive surveys and reviews outline algorithmic
constructs, expressivity, trainability issues (barren plateaus), and near-term (NISQ) practicality (Schuld
& Petruccione, 2018; Cerezo et al., 2021). Empirical demonstrations (Havlicek et al., 2019) introduced
quantum-enhanced feature spaces and quantum kernel estimation on superconducting devices.
Recent reviews contextualize QML applications in finance and simulation-heavy risk problems
(Devadas et al., 2025; publications on QML for quantitative finance).

2.3 Quantum algorithms relevant to risk/premium computation

Three algorithmic elements are most relevant to premium computation:
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1. Quantum kernels / feature maps map classical inputs into quantum states such that inner
products realize kernel evaluations that can capture rich interactions unreachable by classical
kernels for the same resource budget (Havli¢ek et al., 2019).

2. Variational quantum circuits (VQCs) parameterized circuits trained in hybrid loops with
classical optimizers (gradient methods via parameter-shift rules). VQCs can approximate
continuous functions and are the quantum analog to neural networks; however, they face
trainability challenges (Cerezo et al., 2021).

3. Quantum amplitude estimation (QAE) provides a quadratic improvement for
mean/expectation estimation relative to classical Monte Carlo in the fault-tolerant setting
(Montanaro, 2015; Brassard et al., 2002). In actuarial workflows, nested Monte Carlo (e.g., for
tail metrics, CVaR) could benefit substantially from QAE speedups when oracle preparation is
efficient.

2.4 Applications and pilots in finance/insurance

Recent work surveys QML for finance (option pricing, portfolio optimization, risk estimation) and
industry pilot projects show early interest in hybrid quantum workflows for scenario generation and fast
linear algebra subroutines. The Society of Actuaries report (2023) spells out actuarial modeling
opportunities and lists practical considerations (data governance, auditability). There are emerging
academic preprints connecting QML primitives to actuarial tasks (Li et al., 2024; Devadas, 2025).

Literature review summary: QML offers theoretical algorithmic advantages for selected subproblems
relevant to insurance pricing (rich embeddings, accelerated expectation estimation), but practical
deployment is constrained by data-loading costs, NISQ noise, and training difficulties. Therefore, a
hybrid strategy leveraging quantum modules where they are most beneficial and keeping critical
governance, preprocessing, and surrogate explainers classical is currently the most pragmatic
approach.

3. Problem formulation and actuarial objectives
3.1 Notation and objectives

Let policyholder ihave covariates x; € R%. The insurer observes training data D = {(x;, y;)}\*,, where
y;denotes realized loss over a rating period (frequency, severity, or aggregate). The pricing objective is
to compute a premium functional P(x)that balances expected loss and capital/load factors:

Px)=(1+A)-E[Y | X =x]+6(),

where lis a safety loading (capital & solvency) and 68 (x)captures expenses, taxes, and profit margin.
For regulatory and business use, we also require calibrated predictive distributions to compute tail
metrics (VaR/CVaR) and to support solvency modeling. Thus, the QML model must provide (i) accurate
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conditional expectation E[Y | X = x], (ii) a predictive distribution (or samples thereof), and (iii) fast
computation of tail statistics for portfolio-level capital. These tasks decompose naturally into supervised
regression/classification tasks and expectation/sampling tasks for which different QML primitives are
appropriate. No single QML primitive solves all problems; therefore, targeted algorithm selection is key.

4. Quantum model families and mathematical formulations

This section provides formal definitions, training objectives, and implementation notes for two primary
QML families relevant to premium estimation: Quantum Kernel Regression (QKR) and Variational
Quantum Regression (VQR), plus a QAE-assisted uncertainty quantification module.

4.1 Data encoding and preprocessing

Real-world feature vectors typically exceed feasible qubit budgets. Therefore, hybrid preprocessing is
necessary:

1. Classical dimensionality reduction: PCA, autoencoders, or handcrafted feature aggregation
to reduce dto d’, chosen to match qubit budget.

2. Quantum encoding: two standard encodings:

o Angle encoding: map scalar features into single-qubit rotation angles: for vector z € RY,
apply R, (az;)on qubit j. This is robust and simple but scales linearly in qubits.

o Amplitude encoding: embed a normalized vector zinto amplitudes of | ;) =3; zl j).
This is compact in qubit count but may require complex state preparation circuits (costly).

4.2 Quantum kernel regression (QKR) formulation

Define a parameterized feature map circuit Uy (x)that prepares | ¢(x)) = Uy (x)I 0)®". The quantum
kernel is K(x,x") =1 (p(x) | ¢(x")) I>. Construct kernel matrix K € RV*¥with K;; = K(x;,x;). Solve
kernel ridge regression:

@=K+ADy, f(x) =kla,

where k, = [K(x,x;)],. The kernel entries are estimated empirically on a QPU (or simulator) via
overlap measurement circuits (swap test or direct inner-product estimation). Regularization Achosen
via cross-validation. In practice, numerical stability and shot noise must be considered; the kernel
estimation noise can be modeled and incorporated into regularization. (Havlicek et al., 2019).

Complexity note: For an N-point training set, computing the full kernel matrix requires 0(N?)quantum
kernel evaluations; in practice, subsampling or Nystrdom approximations reduce cost. Additionally,
quantum linear solvers (HHL-like) have theoretical speedups but require fault-tolerant regimes and
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condition-number assumptions; thus, we recommend classical solver for inversion in near-term
settings.

4.3 Variational quantum regression (VQR) formulation

Let an encoding Uy (x)prepare the input state; apply a trainable ansatz U(8). Choose observable
O(e.g., Z on a readout qubit or a linear combination) and define the model output:

Y(x;0) = g({0 1 Up()TU(O)TOU()Uy (x) 1 0)),

where g(-)maps measurement expectations to the real-valued output (e.g., identity for direct
regression, scaled sigmoid for constrained outputs). The training objective (MSE with weight decay) is:

N
LO) =5 =IO +BIGIE

Gradients computed via parameter-shift rules yield unbiased estimators for differentiable gates;
optimization proceeds via Adam, L-BFGS, or gradient-free methods (COBYLA) when gradients are
noisy (Cerezo et al., 2021). arXiv

Trainability concerns: VQCs can experience barren plateaus where gradients vanish exponentially
with qubit number or circuit depth. Use problem-inspired ansatze, local cost functions, layer-wise
training, and data re-uploading tricks to mitigate these effects. arXiv+1

4.4 Quantum amplitude estimation (QAE) for uncertainty quantification

For a portfolio-level or policy-level functional f(X)(e.g., loss beyond a threshold, indicator functions
used to compute VaR/CVaR), treat the estimation of u = E[f(X)]as an amplitude estimation problem.
QAE theoretically reduces sample complexity from 0(1/¢2)to 0(1/¢)(Montanaro, 2015; Brassard et al.,
2002). Implementations for near-term devices use approximate amplitude estimation (AAE) variants
that trade asymptotic speedup for lower circuit depth. For nested simulations where inner expectation
loops dominate runtime (e.g., reserve estimation with stochastic economic scenarios), QAE can provide
meaningful runtime reductions in the fault-tolerant era.

Practical caveat: Oracle/state-preparation cost is crucial: QAE only helps when preparing the state
encoding the sampling distribution is efficient. For complex generative models, development of compact
quantum-state encodings or hybrid classical-quantum sampling is required.

5. Proposed hybrid workflow and system architecture

5.1 High-level pipeline
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A pragmatic production pipeline integrates classical cloud infrastructure with quantum backends:
1. Data ingestion & governance (Cloud): ETL, anonymization, storage, governance metadata.

2. Classical preprocessing (Cloud/Edge): feature engineering, dimensionality reduction
(autoencoders/PCA), fairness checks.

3. Quantum modules (Cloud-QPU): (a) quantum kernel evaluation for QKR, (b) VQC training
iterations, (c) QAE modules for expectation estimation (where applicable). Data sent to QPU as
compressed embeddings only (to minimize sensitive exposure).

4. Classical postprocessing & governance (Cloud): calibration, ensembling, surrogate
explainers, audit logs, model registry.

5. Serving & monitoring (On-prem/cloud): deploy pricing API, backtesting, drift detection, re-
training triggers.

5.2 Implementation considerations and toolchain

Use open-source libraries that support hybrid workflows (PennyLane, Qiskit, Cirq). Containerize models
with reproducible environments, and use secure gateways when interacting with QPU providers; ensure
contractual and legal compliance for data leaving insurer premises. Maintain model cards and audit
artifacts for regulatory review.

5.3 Privacy and data-residency mitigations

Avoid sending raw PII to third-party QPUs; instead, send anonymized and dimensionally reduced
embeddings. Consider secure multi-party computation or homomorphic encryption research directions
for scenarios where sensitive features must be used (research area; not yet production-ready at scale).
(Society of Actuaries, 2023).

6. Experimental design and evaluation metrics
6.1 Datasets, simulation protocol, and baselines

Because high-quality labeled insurance datasets are often proprietary, recommended experimental
strategy:

o Public proxies: Kaggle claims datasets, telematics challenge datasets, de-identified health
claims.

e Synthetic cohorts: parametric generative models that inject known interactions and tail
behaviors (controlled heavy-tailed severity distributions) to evaluate model sensitivity to complex
interactions.
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o Baselines: GLMs, XGBoost (tuned), classical kernel ridge regression (RBF), deep ensembles,
and bootstrap quantile regressors.

Design experiments to evaluate both predictive accuracy (RMSE, MAE), distributional calibration
(CRPS, PIT histograms), and economic impact (expected profit/loss mispricing for a synthetic portfolio).
Additionally, measure computational resources: quantum circuit depth, qubits, shots, wall-clock
runtime, and classical resource consumption.

6.2 Statistical tests and significance

Use bootstrap confidence intervals, paired permutation tests, and economically meaningful decision
rules (e.g., expected portfolio P&L change attributable to model differences). For kernel methods, test
for kernel concentration and evaluate whether quantum kernel yields materially different embeddings
than classical RBF/Gaussian kernels on the same data.

7. Representative derivations and proofs
7.1 Kernel ridge regression (derivation)
Given kernel matrix K, regularization 4, and responses y, solve:

min || Ka —y 5+ Aa"Ka,
a

first-order condition yields (K + A)a = yand a = (K + AI)~'y. Prediction: f(x) = kJawhere k, =
[K(x,x;)]. (Standard kernel ridge results; see kernel methods literature and quantum kernel
implementations).

7.2 Parameter-shift gradient for VQC
For a rotation gate R(8) = e~P/2with Pauli generator P(eigenvalues +1), the derivative of expectation

(0)gsatisfies:

0 1
£(0>9 = §(<0>0+n/2 —(0)o-r/2)»

enabling unbiased gradient estimation requiring two additional circuit evaluations per parameter.
(Cerezo et al., 2021).

7.3 Error scaling in amplitude estimation

Classical Monte Carlo error scales as 0(1/vVM)with Msamples; QAE reduces this to 0(1/M)under
idealized oracle assumptions; approximate variants degrade constants but preserve improved scaling
in regimes where oracle depth is feasible. (Montanaro, 2015; Brassard et al., 2002).
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8. Limitations, risks, and mitigation
8.1 NISQ-era constraints and data-loading bottlenecks

Real quantum devices are noisy with limited qubit counts and gate fidelities. Data loading (amplitude
encoding) may be exponentially expensive in circuit depth, mitigating potential speedups. Therefore,
near-term deployments should focus on: (i) classical preprocessing to reduce dimension, (ii) quantum
kernel estimation on compressed representations, and (iii) QML as a feature augmentation rather than
a full replacement for classical models. (Havli¢ek et al., 2019; Cerezo et al., 2021).

8.2 Governance, interpretability, and fairness

Regulators require explainable pricing decisions and audit trails. QML models, by their nature, pose
interpretability challenges; therefore, produce surrogate classical explainers (e.g., SHAP-like analyses
on combined feature+quantum-kernel outputs), maintain model cards, and perform fairness audits to
detect disparate impacts. The Society of Actuaries emphasizes staged pilots and governance
frameworks for quantum adoption in actuarial practice.

8.3 Security and privacy concerns

Sending embeddings to third-party QPU providers introduces data residency and confidentiality risk.
Strategies: anonymization, sending compressed embeddings only, contractual and technical
protections, and research into privacy-preserving encodings.

9. Roadmap for insurer adoption (practical recommendations)

1. Exploratory research run simulator-based experiments and small QPU experiments (non-
sensitive data) to establish feasibility.

2. Pilot hybrid features use quantum kernels or VQC outputs as features in classical ensembles
for targeted lines (e.g., telematics).

3. Governance and model approval maintain detailed documentation, backtesting, and fairness
audits; engage regulators early.

4. Production-grade deployment conditional on hardware maturity and demonstrated economic
benefit, expand quantum modules into risk calculation loops (QAE for capital computations) with
robust fallback classical implementations. (SoA, 2023).

10. Conclusion

Quantum machine learning offers a promising set of primitives quantum kernels, variational circuits,
and amplitude estimation that, when carefully integrated into hybrid pipelines, can contribute to
improved personalization and computational efficiency for insurance premium calculation. However,
practical advantage is highly problem-dependent and contingent on hardware progress and efficient
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data-encoding schemes. In the near term, insurers should view QML as a complementary set of tools
(feature augmentation, accelerated subroutines) and proceed via staged pilots, robust governance, and
close economic evaluation.
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