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Abstract 

Personalized insurance pricing requires robust estimation of conditional loss distributions from high-
dimensional, heterogeneous data (demographics, medical records, telematics, claims histories). 
Classical ML techniques (gradient-boosted trees, deep neural networks, kernel methods) have 
advanced personalization but face computational and statistical limits when data are extremely high-
dimensional, when nested Monte Carlo is required for capital calculations, or when richer uncertainty 
quantification is necessary. Quantum Machine Learning (QML) including quantum kernel methods, 
variational quantum circuits (VQCs), and amplitude-estimation-enabled Monte Carlo acceleration 
provides new algorithmic pathways that may (a) embed rich feature representations in high-dimensional 
Hilbert spaces, (b) offer different inductive biases than classical kernels, and (c) accelerate certain 
expectation-estimation tasks relevant to risk metrics. This paper (1) synthesizes QML theory with 
actuarial pricing objectives, (2) provides full mathematical formulations of candidate QML models and 
their training procedures for premium estimation, (3) designs hybrid quantum–classical deployment 
architectures suitable for insurers, (4) proposes reproducible experimental protocols and evaluation 
metrics, and (5) discusses regulatory, ethical, and practical limitations (NISQ constraints, data loading, 
governance).  
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1. Introduction 

Personalized premium calculation is an actuarial and data-science challenge that blends prediction, 
uncertainty quantification, regulatory constraints, and business objectives. Traditional actuarial tools 
(generalized linear models, credibility theory) have been augmented by modern machine learning to 
produce individualized risk estimates based on telematics, health data, geospatial context, and claims 
histories. However, insurers increasingly confront data that is: (i) high-dimensional (telemetry time 
series, genomic markers), (ii) nonlinearly entangled (complex interactions across modalities), and (iii) 
computationally demanding for risk metrics (nested simulations for tail risk and capital). Under this 
regime, there is a practical incentive to explore algorithmic families beyond classical methods. Quantum 
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computing and, specifically, quantum machine learning (QML) propose new algorithmic primitives 
quantum-enhanced feature maps, variational circuits, and quantum amplitude estimation that can, in 
theory, change computational scaling for selected problems (Havlíček et al., 2019; Cerezo et al., 2021; 
Montanaro, 2015).  

How can QML be formulated, implemented, evaluated, and governed so it meaningfully contributes to 
personalized premium calculation today and on the roadmap to fault-tolerant quantum hardware? I 
answer by (i) mapping actuarial targets to QML primitives, (ii) deriving mathematical formulations, (iii) 
proposing hybrid architectures and deployment protocols, and (iv) designing empirical evaluation 
procedures that quantify both statistical and economic value. I highlight realistic limitations (data-
loading costs, NISQ noise, algorithmic bottlenecks) and propose mitigation strategies. The Society of 
Actuaries’ 2023 primer highlights actuarial opportunities and constraints for quantum computing; this 
manuscript extends those industry-level observations into prescriptive technical designs (Society of 
Actuaries, 2023).  

2. Literature review (extended) 

2.1 Classical actuarial and ML foundations for pricing 

Actuarial pricing traditionally models a target loss variable 𝑌(frequency, severity, aggregate loss) 
conditional on covariates 𝑋. GLMs (Poisson, Gamma) and credibility adjustments remain widely used 
due to interpretability and regulatory acceptance. The last decade has seen adoption of machine-
learning models (tree ensembles, neural networks) for granular segmentation and improved predictive 
power; notable literature discusses benefits (improved fit, nonlinear interactions) and risks (overfitting, 
fairness, interpretability) (Blier-Wong et al., 2020). For distributional forecasts, quantile regression, 
Bayesian models, and ensemble methods are common.  

2.2 Quantum machine learning: surveys and core primitives 

QML literature includes two complementary families: (A) quantum-enhanced classical ML where 
quantum circuits supply feature maps or kernel evaluations to classical learners (quantum kernels), 
and (B) native quantum models trained in hybrid loops (variational quantum circuits acting as 
parameterized function approximators). Comprehensive surveys and reviews outline algorithmic 
constructs, expressivity, trainability issues (barren plateaus), and near-term (NISQ) practicality (Schuld 
& Petruccione, 2018; Cerezo et al., 2021). Empirical demonstrations (Havlíček et al., 2019) introduced 
quantum-enhanced feature spaces and quantum kernel estimation on superconducting devices. 
Recent reviews contextualize QML applications in finance and simulation-heavy risk problems 
(Devadas et al., 2025; publications on QML for quantitative finance).  

2.3 Quantum algorithms relevant to risk/premium computation 

Three algorithmic elements are most relevant to premium computation: 
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1. Quantum kernels / feature maps map classical inputs into quantum states such that inner 
products realize kernel evaluations that can capture rich interactions unreachable by classical 
kernels for the same resource budget (Havlíček et al., 2019).  

2. Variational quantum circuits (VQCs) parameterized circuits trained in hybrid loops with 
classical optimizers (gradient methods via parameter-shift rules). VQCs can approximate 
continuous functions and are the quantum analog to neural networks; however, they face 
trainability challenges (Cerezo et al., 2021).  

3. Quantum amplitude estimation (QAE) provides a quadratic improvement for 
mean/expectation estimation relative to classical Monte Carlo in the fault-tolerant setting 
(Montanaro, 2015; Brassard et al., 2002). In actuarial workflows, nested Monte Carlo (e.g., for 
tail metrics, CVaR) could benefit substantially from QAE speedups when oracle preparation is 
efficient.  

2.4 Applications and pilots in finance/insurance 

Recent work surveys QML for finance (option pricing, portfolio optimization, risk estimation) and 
industry pilot projects show early interest in hybrid quantum workflows for scenario generation and fast 
linear algebra subroutines. The Society of Actuaries report (2023) spells out actuarial modeling 
opportunities and lists practical considerations (data governance, auditability). There are emerging 
academic preprints connecting QML primitives to actuarial tasks (Li et al., 2024; Devadas, 2025).  

Literature review summary: QML offers theoretical algorithmic advantages for selected subproblems 
relevant to insurance pricing (rich embeddings, accelerated expectation estimation), but practical 
deployment is constrained by data-loading costs, NISQ noise, and training difficulties. Therefore, a 
hybrid strategy leveraging quantum modules where they are most beneficial and keeping critical 
governance, preprocessing, and surrogate explainers classical is currently the most pragmatic 
approach.  

3. Problem formulation and actuarial objectives 

3.1 Notation and objectives 

Let policyholder 𝑖have covariates 𝑥௜ ∈ ℝௗ. The insurer observes training data 𝒟 = {(𝑥௜ , 𝑦௜)}௜ୀଵ
ே , where 

𝑦௜denotes realized loss over a rating period (frequency, severity, or aggregate). The pricing objective is 
to compute a premium functional 𝑃(𝑥)that balances expected loss and capital/load factors: 

𝑃(𝑥) = (1 + 𝜆) ⋅ 𝔼[𝑌 ∣ 𝑋 = 𝑥] + 𝜃(𝑥), 
 

where 𝜆is a safety loading (capital & solvency) and 𝜃(𝑥)captures expenses, taxes, and profit margin. 
For regulatory and business use, we also require calibrated predictive distributions to compute tail 
metrics (VaR/CVaR) and to support solvency modeling. Thus, the QML model must provide (i) accurate 
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conditional expectation 𝔼[𝑌 ∣ 𝑋 = 𝑥], (ii) a predictive distribution (or samples thereof), and (iii) fast 
computation of tail statistics for portfolio-level capital. These tasks decompose naturally into supervised 
regression/classification tasks and expectation/sampling tasks for which different QML primitives are 
appropriate. No single QML primitive solves all problems; therefore, targeted algorithm selection is key.  

4. Quantum model families and mathematical formulations 

This section provides formal definitions, training objectives, and implementation notes for two primary 
QML families relevant to premium estimation: Quantum Kernel Regression (QKR) and Variational 
Quantum Regression (VQR), plus a QAE-assisted uncertainty quantification module. 

4.1 Data encoding and preprocessing 

Real-world feature vectors typically exceed feasible qubit budgets. Therefore, hybrid preprocessing is 
necessary: 

1. Classical dimensionality reduction: PCA, autoencoders, or handcrafted feature aggregation 
to reduce 𝑑to 𝑑ᇱ, chosen to match qubit budget. 

2. Quantum encoding: two standard encodings: 

o Angle encoding: map scalar features into single-qubit rotation angles: for vector 𝑧 ∈ ℝௗᇲ
, 

apply 𝑅௬(𝛼𝑧௝)on qubit 𝑗. This is robust and simple but scales linearly in qubits. 

o Amplitude encoding: embed a normalized vector 𝑧into amplitudes of ∣ 𝜓௭⟩ = ∑௝ 𝑧௝∣ 𝑗⟩. 

This is compact in qubit count but may require complex state preparation circuits (costly).  

4.2 Quantum kernel regression (QKR) formulation 

Define a parameterized feature map circuit 𝑈థ(𝑥)that prepares ∣ 𝜙(𝑥)⟩ = 𝑈థ(𝑥)∣ 0⟩⊗௡. The quantum 

kernel is 𝐾(𝑥, 𝑥ᇱ) =∣ ⟨𝜙(𝑥) ∣ 𝜙(𝑥ᇱ)⟩ ∣ଶ. Construct kernel matrix 𝐾 ∈ ℝே×ேwith 𝐾௜௝ = 𝐾(𝑥௜ , 𝑥௝). Solve 

kernel ridge regression: 

𝛼ො = (𝐾 + 𝜆𝐼)ିଵ𝑦, 𝑓መ(𝑥) = 𝑘௫
ୃ𝛼ො, 

 

where 𝑘௫ = [𝐾(𝑥, 𝑥௜)]௜ୀଵ
ே . The kernel entries are estimated empirically on a QPU (or simulator) via 

overlap measurement circuits (swap test or direct inner-product estimation). Regularization 𝜆chosen 
via cross-validation. In practice, numerical stability and shot noise must be considered; the kernel 
estimation noise can be modeled and incorporated into regularization. (Havlíček et al., 2019).  

Complexity note: For an 𝑁-point training set, computing the full kernel matrix requires 𝑂(𝑁ଶ)quantum 
kernel evaluations; in practice, subsampling or Nyström approximations reduce cost. Additionally, 
quantum linear solvers (HHL-like) have theoretical speedups but require fault-tolerant regimes and 
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condition-number assumptions; thus, we recommend classical solver for inversion in near-term 
settings.  

4.3 Variational quantum regression (VQR) formulation 

Let an encoding 𝑈థ(𝑥)prepare the input state; apply a trainable ansatz 𝑈(𝜃). Choose observable 

𝑂(e.g., Z on a readout qubit or a linear combination) and define the model output: 

𝑦ො(𝑥; 𝜃) = 𝑔(⟨0 ∣ 𝑈థ(𝑥)ற𝑈(𝜃)ற𝑂𝑈(𝜃)𝑈థ(𝑥) ∣ 0⟩), 

 

where 𝑔(⋅)maps measurement expectations to the real-valued output (e.g., identity for direct 
regression, scaled sigmoid for constrained outputs). The training objective (MSE with weight decay) is: 

ℒ(𝜃) =
1

𝑁
෍

ே

௜ୀଵ

(𝑦௜ − 𝑦ො(𝑥௜; 𝜃))ଶ + 𝛽 ∥ 𝜃 ∥ଶ. 

 

Gradients computed via parameter-shift rules yield unbiased estimators for differentiable gates; 
optimization proceeds via Adam, L-BFGS, or gradient-free methods (COBYLA) when gradients are 
noisy (Cerezo et al., 2021). arXiv 

Trainability concerns: VQCs can experience barren plateaus where gradients vanish exponentially 
with qubit number or circuit depth. Use problem-inspired ansätze, local cost functions, layer-wise 
training, and data re-uploading tricks to mitigate these effects. arXiv+1 

4.4 Quantum amplitude estimation (QAE) for uncertainty quantification 

For a portfolio-level or policy-level functional 𝑓(𝑋)(e.g., loss beyond a threshold, indicator functions 
used to compute VaR/CVaR), treat the estimation of 𝜇 = 𝔼[𝑓(𝑋)]as an amplitude estimation problem. 
QAE theoretically reduces sample complexity from 𝑂(1/𝜖ଶ)to 𝑂(1/𝜖)(Montanaro, 2015; Brassard et al., 
2002). Implementations for near-term devices use approximate amplitude estimation (AAE) variants 
that trade asymptotic speedup for lower circuit depth. For nested simulations where inner expectation 
loops dominate runtime (e.g., reserve estimation with stochastic economic scenarios), QAE can provide 
meaningful runtime reductions in the fault-tolerant era.  

Practical caveat: Oracle/state-preparation cost is crucial: QAE only helps when preparing the state 
encoding the sampling distribution is efficient. For complex generative models, development of compact 
quantum-state encodings or hybrid classical-quantum sampling is required. 

5. Proposed hybrid workflow and system architecture 

5.1 High-level pipeline 
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A pragmatic production pipeline integrates classical cloud infrastructure with quantum backends: 

1. Data ingestion & governance (Cloud): ETL, anonymization, storage, governance metadata. 

2. Classical preprocessing (Cloud/Edge): feature engineering, dimensionality reduction 
(autoencoders/PCA), fairness checks. 

3. Quantum modules (Cloud-QPU): (a) quantum kernel evaluation for QKR, (b) VQC training 
iterations, (c) QAE modules for expectation estimation (where applicable). Data sent to QPU as 
compressed embeddings only (to minimize sensitive exposure). 

4. Classical postprocessing & governance (Cloud): calibration, ensembling, surrogate 
explainers, audit logs, model registry. 

5. Serving & monitoring (On-prem/cloud): deploy pricing API, backtesting, drift detection, re-
training triggers.  

5.2 Implementation considerations and toolchain 

Use open-source libraries that support hybrid workflows (PennyLane, Qiskit, Cirq). Containerize models 
with reproducible environments, and use secure gateways when interacting with QPU providers; ensure 
contractual and legal compliance for data leaving insurer premises. Maintain model cards and audit 
artifacts for regulatory review. 

5.3 Privacy and data-residency mitigations 

Avoid sending raw PII to third-party QPUs; instead, send anonymized and dimensionally reduced 
embeddings. Consider secure multi-party computation or homomorphic encryption research directions 
for scenarios where sensitive features must be used (research area; not yet production-ready at scale). 
(Society of Actuaries, 2023).  

6. Experimental design and evaluation metrics 

6.1 Datasets, simulation protocol, and baselines 

Because high-quality labeled insurance datasets are often proprietary, recommended experimental 
strategy: 

 Public proxies: Kaggle claims datasets, telematics challenge datasets, de-identified health 
claims. 

 Synthetic cohorts: parametric generative models that inject known interactions and tail 
behaviors (controlled heavy-tailed severity distributions) to evaluate model sensitivity to complex 
interactions. 
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 Baselines: GLMs, XGBoost (tuned), classical kernel ridge regression (RBF), deep ensembles, 
and bootstrap quantile regressors. 

Design experiments to evaluate both predictive accuracy (RMSE, MAE), distributional calibration 
(CRPS, PIT histograms), and economic impact (expected profit/loss mispricing for a synthetic portfolio). 
Additionally, measure computational resources: quantum circuit depth, qubits, shots, wall-clock 
runtime, and classical resource consumption. 

6.2 Statistical tests and significance 

Use bootstrap confidence intervals, paired permutation tests, and economically meaningful decision 
rules (e.g., expected portfolio P&L change attributable to model differences). For kernel methods, test 
for kernel concentration and evaluate whether quantum kernel yields materially different embeddings 
than classical RBF/Gaussian kernels on the same data.  

7. Representative derivations and proofs 

7.1 Kernel ridge regression (derivation) 

Given kernel matrix 𝐾, regularization 𝜆, and responses 𝑦, solve: 

min 
ఈ

 ∥ 𝐾𝛼 − 𝑦 ∥ଶ
ଶ+ 𝜆𝛼ୃ𝐾𝛼, 

 

first-order condition yields (𝐾 + 𝜆𝐼)𝛼 = 𝑦and 𝛼 = (𝐾 + 𝜆𝐼)ିଵ𝑦. Prediction: 𝑓መ(𝑥) = 𝑘௫
ୃ𝛼where 𝑘௫ =

[𝐾(𝑥, 𝑥௜)]. (Standard kernel ridge results; see kernel methods literature and quantum kernel 
implementations).  

7.2 Parameter-shift gradient for VQC 

For a rotation gate 𝑅(𝜃) = 𝑒ି௜ఏ௉/ଶwith Pauli generator 𝑃(eigenvalues ±1), the derivative of expectation 
⟨𝑂⟩ఏsatisfies: 

∂

∂𝜃
⟨𝑂⟩ఏ =

1

2
(⟨𝑂⟩ఏାగ/ଶ − ⟨𝑂⟩ఏିగ/ଶ), 

 

enabling unbiased gradient estimation requiring two additional circuit evaluations per parameter. 
(Cerezo et al., 2021).  

7.3 Error scaling in amplitude estimation 

Classical Monte Carlo error scales as 𝑂(1/√𝑀)with 𝑀samples; QAE reduces this to 𝑂(1/𝑀)under 
idealized oracle assumptions; approximate variants degrade constants but preserve improved scaling 
in regimes where oracle depth is feasible. (Montanaro, 2015; Brassard et al., 2002).  
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8. Limitations, risks, and mitigation 

8.1 NISQ-era constraints and data-loading bottlenecks 

Real quantum devices are noisy with limited qubit counts and gate fidelities. Data loading (amplitude 
encoding) may be exponentially expensive in circuit depth, mitigating potential speedups. Therefore, 
near-term deployments should focus on: (i) classical preprocessing to reduce dimension, (ii) quantum 
kernel estimation on compressed representations, and (iii) QML as a feature augmentation rather than 
a full replacement for classical models. (Havlíček et al., 2019; Cerezo et al., 2021).  

8.2 Governance, interpretability, and fairness 

Regulators require explainable pricing decisions and audit trails. QML models, by their nature, pose 
interpretability challenges; therefore, produce surrogate classical explainers (e.g., SHAP-like analyses 
on combined feature+quantum-kernel outputs), maintain model cards, and perform fairness audits to 
detect disparate impacts. The Society of Actuaries emphasizes staged pilots and governance 
frameworks for quantum adoption in actuarial practice.  

8.3 Security and privacy concerns 

Sending embeddings to third-party QPU providers introduces data residency and confidentiality risk. 
Strategies: anonymization, sending compressed embeddings only, contractual and technical 
protections, and research into privacy-preserving encodings. 

9. Roadmap for insurer adoption (practical recommendations) 

1. Exploratory research run simulator-based experiments and small QPU experiments (non-
sensitive data) to establish feasibility. 

2. Pilot hybrid features use quantum kernels or VQC outputs as features in classical ensembles 
for targeted lines (e.g., telematics). 

3. Governance and model approval maintain detailed documentation, backtesting, and fairness 
audits; engage regulators early. 

4. Production-grade deployment conditional on hardware maturity and demonstrated economic 
benefit, expand quantum modules into risk calculation loops (QAE for capital computations) with 
robust fallback classical implementations. (SoA, 2023).  

10. Conclusion 

Quantum machine learning offers a promising set of primitives quantum kernels, variational circuits, 
and amplitude estimation that, when carefully integrated into hybrid pipelines, can contribute to 
improved personalization and computational efficiency for insurance premium calculation. However, 
practical advantage is highly problem-dependent and contingent on hardware progress and efficient 
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data-encoding schemes. In the near term, insurers should view QML as a complementary set of tools 
(feature augmentation, accelerated subroutines) and proceed via staged pilots, robust governance, and 
close economic evaluation. 
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